We present a Gause type predator-prey model incorporating delay due to response of prey population growth to density and gestation. The functional response of predator is assumed to be of Holling type II. In absence of prey, predator has a density dependent death rate. Sufficient criterion for uniform persistence is derived. Conditions are found out for which system undergoes a Hopf-bifurcation.
Mots-clés : persistance, bifurcation, stability, holling type II
@article{M2AN_2003__37_2_339_0, author = {Mukherjee, Debasis}, title = {Persistence and bifurcation analysis on a predator-prey system of holling type}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {339--344}, publisher = {EDP-Sciences}, volume = {37}, number = {2}, year = {2003}, doi = {10.1051/m2an:2003029}, zbl = {1029.34040}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an:2003029/} }
TY - JOUR AU - Mukherjee, Debasis TI - Persistence and bifurcation analysis on a predator-prey system of holling type JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2003 SP - 339 EP - 344 VL - 37 IS - 2 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an:2003029/ DO - 10.1051/m2an:2003029 LA - en ID - M2AN_2003__37_2_339_0 ER -
%0 Journal Article %A Mukherjee, Debasis %T Persistence and bifurcation analysis on a predator-prey system of holling type %J ESAIM: Modélisation mathématique et analyse numérique %D 2003 %P 339-344 %V 37 %N 2 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an:2003029/ %R 10.1051/m2an:2003029 %G en %F M2AN_2003__37_2_339_0
Mukherjee, Debasis. Persistence and bifurcation analysis on a predator-prey system of holling type. ESAIM: Modélisation mathématique et analyse numérique, Tome 37 (2003) no. 2, pp. 339-344. doi : 10.1051/m2an:2003029. http://archive.numdam.org/articles/10.1051/m2an:2003029/
[1] Stability analysis of the time delay in a Host-Parasitoid Model. J. Theoret. Biol. 83 (1980) 43-62.
, and ,[2] Convergence results in a well known delayed predator-prey system. J. Math. Anal. Appl. 204 (1996) 840-853. | Zbl
and ,[3] The origins and evolution of predator-prey theory. Ecology 73 (1992) 1530-1535.
,[4] Global attractivity in time delayed predator-prey system. J. Austral. Math. Soc. Ser. B. 38 (1996) 149-270. | Zbl
and ,[5] Functional response of wolves preying on barren ground caribou in a multiple prey ecosystem. J. Anim. Ecology 63 (1994) 644-652.
, and ,[6] The stable coexistence of competing species on a renewable resource. 138 (1989) 461-472. | Zbl
and ,[7] The trade-off between mutual interface and time lags in predator-prey systems. Bull. Math. Biol. 45 (1983) 991-1004. | Zbl
and ,[8] Persistence in infinite dimensional systems. SIAM J. Math. Anal. 20 (1989) 388-395. | Zbl
and ,[9] Non uniqueness of limit cycles of Gause type predator-prey systems. Appl. Anal. 29 (1988) 269-287. | Zbl
,[10] On the location and period of limit cycles in Gause type predator-prey systems. J. Math. Anal. Appl. 142 (1989) 130-143. | Zbl
,[11] Limit cycles in a chemostat related model. SIAM J. Appl. Math. 49 (1989) 1759-1767. | Zbl
,[12] Global stability of Gause type predator-prey systems. J. Math. Biol. 28 (1990) 463-474. | Zbl
,[13] Delay Differential Equations with Applications in Population Dynamics. Academic Press, San Diego (1993). | MR | Zbl
,[14] Uniqueness of limit cycles in Gause type predator-prey systems. Math. Biosci. 88 (1988) 67-84. | Zbl
and ,[15] Time-delay versus stability in population models with two and three trophic levels. Ecology 54 (1973) 315-325.
,[16] Uniform persistence and global attractivity theorem for generalized prey-predator system with time delay. Nonlinear Anal. 38 (1999) 59-74. | Zbl
and ,[17] Ecology. W.H. Freeman and Company, New York (2000).
and ,[18] Oscillations of housefly population sizes due to time lags. Ecology 57 (1976) 1060-1067.
and ,[19] An analysis of the predatory interactions between Paramecium and Didinium, J. Anim. Ecol. 48 (1979) 787-803.
,[20] Harmless delays for uniform persistence. J. Math. Anal. Appl. 158 (1991) 256-268. | Zbl
and ,Cité par Sources :