We study in this paper some numerical schemes for hyperbolic systems with unilateral constraint. In particular, we deal with the scalar case, the isentropic gas dynamics system and the full-gas dynamics system. We prove the convergence of the scheme to an entropy solution of the isentropic gas dynamics with unilateral constraint on the density and mass loss. We also study the non-trivial steady states of the system.
Mots-clés : numerical scheme, conservation laws with constraint, convergence of scheme, entropy scheme, gas dynamics
@article{M2AN_2003__37_3_479_0, author = {Berthelin, Florent}, title = {Numerical flux-splitting for a class of hyperbolic systems with unilateral constraint}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {479--494}, publisher = {EDP-Sciences}, volume = {37}, number = {3}, year = {2003}, doi = {10.1051/m2an:2003038}, mrnumber = {1994313}, zbl = {1028.35101}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an:2003038/} }
TY - JOUR AU - Berthelin, Florent TI - Numerical flux-splitting for a class of hyperbolic systems with unilateral constraint JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2003 SP - 479 EP - 494 VL - 37 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an:2003038/ DO - 10.1051/m2an:2003038 LA - en ID - M2AN_2003__37_3_479_0 ER -
%0 Journal Article %A Berthelin, Florent %T Numerical flux-splitting for a class of hyperbolic systems with unilateral constraint %J ESAIM: Modélisation mathématique et analyse numérique %D 2003 %P 479-494 %V 37 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an:2003038/ %R 10.1051/m2an:2003038 %G en %F M2AN_2003__37_3_479_0
Berthelin, Florent. Numerical flux-splitting for a class of hyperbolic systems with unilateral constraint. ESAIM: Modélisation mathématique et analyse numérique, Tome 37 (2003) no. 3, pp. 479-494. doi : 10.1051/m2an:2003038. http://archive.numdam.org/articles/10.1051/m2an:2003038/
[1] Existence and weak stability for a two-phase model with unilateral constraint. Math. Models Methods Appl. Sci. 12 (2002) 249-272. | Zbl
,[2] Solution with finite energy to a BGK system relaxing to isentropic gas dynamics. Ann. Fac. Sci. Toulouse Math. 9 (2000) 605-630. | EuDML | Numdam | Zbl
and ,[3] Kinetic invariant domains and relaxation limit from a BGK model to isentropic gas dynamics. Asymptot. Anal. 31 (2002) 153-176. | Zbl
and ,[4] Weak solutions for a hyperbolic system with unilateral constraint and mass loss. Ann. Inst. H. Poincaré Anal. Non Linéaire (to appear). | EuDML | Numdam | MR | Zbl
and ,[5] Equilibrium schemes for scalar conservation laws with stiff sources. Rapport INRIA RR-3891. | Zbl
, and ,[6] Construction of BGK models with a family of kinetic entropies for a given system of conservation laws. J. Statist. Phys. 95 (1999) 113-170. | Zbl
,[7] Entropy satisfying flux vector splittings and kinetic BGK models. Numer. Math. (to appear). | MR | Zbl
,[8] Entropy flux-splittings for hyperbolic conservation laws I, General framework. Comm. Pure Appl. Math. 48 (1995) 691-729. | Zbl
and ,[9] Entropies and flux-splittings for the isentropic Euler equations. Chinese Ann. Math. Ser. B 22 (2001) 145-158. | Zbl
and ,[10] Equality or convex inequality constraints and hyperbolic systems of conservation laws with entropy. Preprint (2001).
,[11] Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics. Comm. Math. Phys. 177 (1996) 349-380. | Zbl
, and ,[12] Hyperbolic systems of conservation laws. Mathématiques & Applications 3/4, Ellipses, Paris (1991). | MR | Zbl
and ,[13] A well-balanced scheme designed for inhomogeneous scalar conservation laws. C. R. Acad. Sci. Paris Sér. I Math. 323 (1996) 543-546. | Zbl
and ,[14] A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33 (1996) 1-16. | Zbl
and ,[15] A steady-state capturing method for hyperbolic systems with geometrical source term. ESAIM: M2AN 35 (2001) 631-645. | Numdam | Zbl
,[16] First order quasilinear equations in several independant variables. Mat. Sb. 81 (1970) 285-255; Mat. Sb 10 (1970) 217-243. | Zbl
,[17] Convergence of a relaxation scheme for hyperbolic systems of conservation laws. Numer. Math. 88 (2001) 121-134. | Zbl
and ,[18] Obstacle problems for scalar conservation laws. ESAIM: M2AN 35 (2001) 575-593. | Numdam | Zbl
,[19] Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates. Comm. Pure Appl. Math. 49 (1996) 599-638. | Zbl
, and ,[20] Inéquations variationnelles et quasivariationnelles hyperboliques du premier ordre. J. Math. Pures Appl. 55 (1976) 353-378. | Zbl
and ,Cité par Sources :