Exterior problem of the Darwin model and its numerical computation
ESAIM: Modélisation mathématique et analyse numérique, Tome 37 (2003) no. 3, pp. 515-532.

In this paper, we study the exterior boundary value problems of the Darwin model to the Maxwell's equations. The variational formulation is established and the existence and uniqueness is proved. We use the infinite element method to solve the problem, only a small amount of computational work is needed. Numerical examples are given as well as a proof of convergence.

DOI : 10.1051/m2an:2003040
Classification : 35Q60, 65N30, 35J50
Mots clés : Darwin model, Maxwell's equations, exterior problem, infinite element method
@article{M2AN_2003__37_3_515_0,
     author = {Ying, Lung-An and Li, Fengyan},
     title = {Exterior problem of the {Darwin} model and its numerical computation},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {515--532},
     publisher = {EDP-Sciences},
     volume = {37},
     number = {3},
     year = {2003},
     doi = {10.1051/m2an:2003040},
     mrnumber = {1994315},
     zbl = {1031.35143},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an:2003040/}
}
TY  - JOUR
AU  - Ying, Lung-An
AU  - Li, Fengyan
TI  - Exterior problem of the Darwin model and its numerical computation
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2003
SP  - 515
EP  - 532
VL  - 37
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an:2003040/
DO  - 10.1051/m2an:2003040
LA  - en
ID  - M2AN_2003__37_3_515_0
ER  - 
%0 Journal Article
%A Ying, Lung-An
%A Li, Fengyan
%T Exterior problem of the Darwin model and its numerical computation
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2003
%P 515-532
%V 37
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an:2003040/
%R 10.1051/m2an:2003040
%G en
%F M2AN_2003__37_3_515_0
Ying, Lung-An; Li, Fengyan. Exterior problem of the Darwin model and its numerical computation. ESAIM: Modélisation mathématique et analyse numérique, Tome 37 (2003) no. 3, pp. 515-532. doi : 10.1051/m2an:2003040. http://archive.numdam.org/articles/10.1051/m2an:2003040/

[1] P. Ciarlet Jr and J. Zou, Finite element convergence for the Darwin model to Maxwell's equations. Math. Modelling Numer. Anal. 31 (1997) 213-250. | Numdam | Zbl

[2] P. Degond and P.A. Raviart, An analysis of the Darwin model of approximation to Maxwell's equations. Forum Math. 4 (1992) 13-44. | Zbl

[3] V. Girault and P.A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer, Berlin (1988). | MR | Zbl

[4] V. Girault and A. Sequeira, A well-posed problem for the exterior stokes equations in two and three dimensions. Arch. Ration. Mech. Anal. 114 (1991) 313-333. | Zbl

[5] D.W. Hewett and C. Nielson, A multidimensional quasineutral plasma simulation model. J. Comput. Phys. 29 (1978) 219-236. | Zbl

[6] O.A. Ladyzhenskaya,The Mathematical Theory of Viscous Incompressible Flow. 2nd ed., Gordon and Breach, New York (1969). | MR | Zbl

[7] T.-T. Li and T. Qin, Physics and Partial Differential Equations. Higher Education Press, Beijing (1997).

[8] R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis. 3rd ed., North-Holland (1984). | MR | Zbl

[9] L.-A. Ying, Infinite element approximation to axial symmetric Stokes flow. J. Comput. Math. 4 (1986) 111-120. | Zbl

[10] L.-A. Ying, Infinite Element Methods. Peking University Press, Beijing and Vieweg and Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden (1995). | MR | Zbl

Cité par Sources :