Numerical simulation of chemotactic bacteria aggregation via mixed finite elements
ESAIM: Modélisation mathématique et analyse numérique, Special issue on Biological and Biomedical Applications, Tome 37 (2003) no. 4, pp. 617-630.

We start from a mathematical model which describes the collective motion of bacteria taking into account the underlying biochemistry. This model was first introduced by Keller-Segel [13]. A new formulation of the system of partial differential equations is obtained by the introduction of a new variable (this new variable is similar to the quasi-Fermi level in the framework of semiconductor modelling). This new system of P.D.E. is approximated via a mixed finite element technique. The solution algorithm is then described and finally we give some preliminary numerical results. Especially our method is well adapted to compute the concentration of bacteria.

DOI : 10.1051/m2an:2003048
Classification : 35Q, 65M, 92B, 92C
Mots-clés : biophysics, chemotaxis, numerical simulation, mixed finite element
@article{M2AN_2003__37_4_617_0,
     author = {Marrocco, Americo},
     title = {Numerical simulation of chemotactic bacteria aggregation via mixed finite elements},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {617--630},
     publisher = {EDP-Sciences},
     volume = {37},
     number = {4},
     year = {2003},
     doi = {10.1051/m2an:2003048},
     mrnumber = {2018433},
     zbl = {1065.92006},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an:2003048/}
}
TY  - JOUR
AU  - Marrocco, Americo
TI  - Numerical simulation of chemotactic bacteria aggregation via mixed finite elements
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2003
SP  - 617
EP  - 630
VL  - 37
IS  - 4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an:2003048/
DO  - 10.1051/m2an:2003048
LA  - en
ID  - M2AN_2003__37_4_617_0
ER  - 
%0 Journal Article
%A Marrocco, Americo
%T Numerical simulation of chemotactic bacteria aggregation via mixed finite elements
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2003
%P 617-630
%V 37
%N 4
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an:2003048/
%R 10.1051/m2an:2003048
%G en
%F M2AN_2003__37_4_617_0
Marrocco, Americo. Numerical simulation of chemotactic bacteria aggregation via mixed finite elements. ESAIM: Modélisation mathématique et analyse numérique, Special issue on Biological and Biomedical Applications, Tome 37 (2003) no. 4, pp. 617-630. doi : 10.1051/m2an:2003048. http://archive.numdam.org/articles/10.1051/m2an:2003048/

[1] M.D. Betterton and M.P. Brenner, Collapsing bacterial cylinders. Phys. Rev. E 64 (2001) 061904.

[2] M.P. Brenner, L.S. Levitov and E.O. Budrene, Physical mechanisms for chemotactic pattern formation bybacteria. Biophys. J. 74 (1998) 1677-1693.

[3] M.P. Brenner, P. Constantin, L.P. Kadanof, A. Schenkel and S.C. Venhataramani, Diffusion, attraction and collapse. Nonlinearity 12 (1999) 1071-1098. | Zbl

[4] L. Corrias, B. Perthame and H. Zaag, A model motivated by angiogenesis. C. Rendus Acad. Sc. Paris, to appear.

[5] A El Boukili and A. Marrocco, Arclength continuation methods and applications to 2d drift-diffusion semiconductor equations. Rapport de recherche 2546, INRIA (mai 1995).

[6] A. El Boukili, Analyse mathématique et simulation numérique bidimensionnelle des dispositifs semi-conducteurs à hétérojonctions par l'approche éléments finis mixtes. Ph.D. thesis, Univ. Pierre et Marie Curie, Paris (décembre 1995).

[7] R. Glowinski and P. Le Tallec, Augmented Lagrangian and Operator Splitting Methods in Nonlinear Mechanics, Studies in Applied Mathematics. SIAM, Philadelphia (1989). | MR | Zbl

[8] M.A. Herrero and J.J.L. Velázquez, Chemotactic collapse for the keller-segel model. J. Math. Biol. 35 (1996) 177-194. | Zbl

[9] M.A. Herrero, E. Medina and J.J.L. Velázquez, Finite time aggregation into a single point in a reaction-diffusion system. Nonlinearity 10 (1997) 1739-1754. | Zbl

[10] F. Hecht and A. Marrocco, Numerical simulation of heterojunction structures using mixed finite elements and operator splitting, in 10th International Conference on Computing Methods in Applied Sciences and Engineering, R. Glowinski Ed., Nova Science Publishers, Le Vésinet (February 1992) 271-286.

[11] F. Hecht and A. Marrocco, Mixed finite element simulation of heterojunction structures including a boundary layer model for the quasi-fermi levels. COMPEL 13 (1994) 757-770. | Zbl

[12] W. Jäger and S. Luckhaus, On explosion of solution to a system of partial differential equations modelling chemotaxis. Trans. Amer. Math. Soc. 239 (1992) 819-824. | Zbl

[13] E.F. Keller and L.A. Segel, Model for chemotaxis. J. Theor. Biol. 30 (1971) 225-234.

[14] A. Marrocco and Ph. Montarnal, Simulation des modèles energy-transport à l'aide des éléments finis mixtes. C.R. Acad. Sci. Paris I 323 (1996) 535-541. | Zbl

[15] Ph. Montarnal, Modèles de transport d'énergie des semi-conducteurs, études asymptotiques et résolution par des éléments finis mixtes. Ph.D. thesis, Université Paris VI (octobre 1997).

[16] A. Marrocco, 2d simulation of chemotactic bacteria aggregation. Rapport de recherche 4667, INRIA (décembre 2002).

Cité par Sources :