Simulation of electrophysiological waves with an unstructured finite element method
ESAIM: Modélisation mathématique et analyse numérique, Special issue on Biological and Biomedical Applications, Tome 37 (2003) no. 4, pp. 649-661.

Bidomain models are commonly used for studying and simulating electrophysiological waves in the cardiac tissue. Most of the time, the associated PDEs are solved using explicit finite difference methods on structured grids. We propose an implicit finite element method using unstructured grids for an anisotropic bidomain model. The impact and numerical requirements of unstructured grid methods is investigated using a test case with re-entrant waves.

DOI : 10.1051/m2an:2003051
Classification : 35K57, 65M60, 92Cxx
Mots-clés : anisotropic bidomain model, spiral waves, FEM
@article{M2AN_2003__37_4_649_0,
     author = {Bourgault, Yves and Ethier, Marc and LeBlanc, Victor G.},
     title = {Simulation of electrophysiological waves with an unstructured finite element method},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {649--661},
     publisher = {EDP-Sciences},
     volume = {37},
     number = {4},
     year = {2003},
     doi = {10.1051/m2an:2003051},
     mrnumber = {2018435},
     zbl = {1065.92004},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an:2003051/}
}
TY  - JOUR
AU  - Bourgault, Yves
AU  - Ethier, Marc
AU  - LeBlanc, Victor G.
TI  - Simulation of electrophysiological waves with an unstructured finite element method
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2003
SP  - 649
EP  - 661
VL  - 37
IS  - 4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an:2003051/
DO  - 10.1051/m2an:2003051
LA  - en
ID  - M2AN_2003__37_4_649_0
ER  - 
%0 Journal Article
%A Bourgault, Yves
%A Ethier, Marc
%A LeBlanc, Victor G.
%T Simulation of electrophysiological waves with an unstructured finite element method
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2003
%P 649-661
%V 37
%N 4
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an:2003051/
%R 10.1051/m2an:2003051
%G en
%F M2AN_2003__37_4_649_0
Bourgault, Yves; Ethier, Marc; LeBlanc, Victor G. Simulation of electrophysiological waves with an unstructured finite element method. ESAIM: Modélisation mathématique et analyse numérique, Special issue on Biological and Biomedical Applications, Tome 37 (2003) no. 4, pp. 649-661. doi : 10.1051/m2an:2003051. http://archive.numdam.org/articles/10.1051/m2an:2003051/

[1] D. Barkley, Euclidean symmetry and the dynamics of spiral waves. Phys. Rev. Lett. 72 (1994) 165-167.

[2] P. Brown and Y. Saad, Hybrid Krylov methods for nonlinear systems of equations. Technical Report UCRL-97645, Lawrence Livermore National Laboratory (November 1987). | Zbl

[3] M. Golubitsky, V.G. Leblanc and I. Melbourne, Meandering of the spiral tip: An alternative approach. J. Nonlinear Sci. 7 (1997) 557-586. | Zbl

[4] J. Gomatam and F. Amdjadi, Reaction-diffusion equations on a sphere: Mendering of spiral waves. Phys. Rev. E 56 (1997) 3913-3919.

[5] D.M. Harrild and C.S. Henriquez, A finite volume model of cardiac propagation. Ann. Biomed. Eng. 25 (1997) 315-334.

[6] J.P. Keener and K. Bogar, A numerical method for the solution of the bidomain equations in cardiac tissue. Chaos 8 (1998) 234-241. | Zbl

[7] J.P. Keener and A.V. Panfilov, The effect of geometry and fibre orientation on propagation and extracellular potentials in myocardium, in Computational Biology of the Heart, A.V. Panfilov and A.V. Holden Eds., John Wiley & Sons (1997) 235-258. | Zbl

[8] J. Keener and J. Sneyd, Mathematical Physiology, Springer-Verlag (1998). | MR | Zbl

[9] V.G. Leblanc, Rotational symmetry-breaking for spiral waves. Nonlinearity 15 (2002) 1179-1203. | Zbl

[10] V.G. Leblanc and B.J. Roth, Meandering of spiral waves in anisotropic tissue. Dynam. Contin. Discrete Impuls. Systems B 10 (2003) 29-41. | Zbl

[11] M. Murillo and X.C. Cai, Parallel Newton-Krylov-Schwarz method for solving the anisotropic bidomain equations from the excitation of the heart model. Lecture Notes in Comput. Sci. 2329 (2002) 533-542. | Zbl

[12] N.F. Otani, Computer modeling in cardiac electrophysiology. J. Comput. Phys. 161 (2000) 21-34. | Zbl

[13] A.V. Panfilov and A.V. Holden, editors, Computational Biology of the Heart. John Wiley & Sons (1997). | Zbl

[14] J. Rogers, M. Courtemanche and A. Mcculloch, Finite element methods for modelling impulse propagation in the heart, in Computational Biology of the Heart, A.V. Panfilov and A.V. Holden Eds., John Wiley & Sons (1997) 217-233. | Zbl

[15] B.J. Roth, Approximate analytical solutions to the bidomain equations with unequal anisotropy ratio. Phys. Rev. E 55 (1997) 1819-1826.

[16] B.J. Roth, Mendering of spiral waves in anisotropic cardiac tissue. Phys. D 150 (2001) 127-136. | Zbl

[17] V.S. Zykov and S.C. Müller, Spiral waves on circular and spherical domains of excitable medium. Phys. D 97 (1996) 322-332.

Cité par Sources :