Bidomain models are commonly used for studying and simulating electrophysiological waves in the cardiac tissue. Most of the time, the associated PDEs are solved using explicit finite difference methods on structured grids. We propose an implicit finite element method using unstructured grids for an anisotropic bidomain model. The impact and numerical requirements of unstructured grid methods is investigated using a test case with re-entrant waves.
Mots-clés : anisotropic bidomain model, spiral waves, FEM
@article{M2AN_2003__37_4_649_0, author = {Bourgault, Yves and Ethier, Marc and LeBlanc, Victor G.}, title = {Simulation of electrophysiological waves with an unstructured finite element method}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {649--661}, publisher = {EDP-Sciences}, volume = {37}, number = {4}, year = {2003}, doi = {10.1051/m2an:2003051}, mrnumber = {2018435}, zbl = {1065.92004}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an:2003051/} }
TY - JOUR AU - Bourgault, Yves AU - Ethier, Marc AU - LeBlanc, Victor G. TI - Simulation of electrophysiological waves with an unstructured finite element method JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2003 SP - 649 EP - 661 VL - 37 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an:2003051/ DO - 10.1051/m2an:2003051 LA - en ID - M2AN_2003__37_4_649_0 ER -
%0 Journal Article %A Bourgault, Yves %A Ethier, Marc %A LeBlanc, Victor G. %T Simulation of electrophysiological waves with an unstructured finite element method %J ESAIM: Modélisation mathématique et analyse numérique %D 2003 %P 649-661 %V 37 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an:2003051/ %R 10.1051/m2an:2003051 %G en %F M2AN_2003__37_4_649_0
Bourgault, Yves; Ethier, Marc; LeBlanc, Victor G. Simulation of electrophysiological waves with an unstructured finite element method. ESAIM: Modélisation mathématique et analyse numérique, Special issue on Biological and Biomedical Applications, Tome 37 (2003) no. 4, pp. 649-661. doi : 10.1051/m2an:2003051. http://archive.numdam.org/articles/10.1051/m2an:2003051/
[1] Euclidean symmetry and the dynamics of spiral waves. Phys. Rev. Lett. 72 (1994) 165-167.
,[2] Hybrid Krylov methods for nonlinear systems of equations. Technical Report UCRL-97645, Lawrence Livermore National Laboratory (November 1987). | Zbl
and ,[3] Meandering of the spiral tip: An alternative approach. J. Nonlinear Sci. 7 (1997) 557-586. | Zbl
, and ,[4] Reaction-diffusion equations on a sphere: Mendering of spiral waves. Phys. Rev. E 56 (1997) 3913-3919.
and ,[5] A finite volume model of cardiac propagation. Ann. Biomed. Eng. 25 (1997) 315-334.
and ,[6] A numerical method for the solution of the bidomain equations in cardiac tissue. Chaos 8 (1998) 234-241. | Zbl
and ,[7] The effect of geometry and fibre orientation on propagation and extracellular potentials in myocardium, in Computational Biology of the Heart, A.V. Panfilov and A.V. Holden Eds., John Wiley & Sons (1997) 235-258. | Zbl
and ,[8] Mathematical Physiology, Springer-Verlag (1998). | MR | Zbl
and ,[9] Rotational symmetry-breaking for spiral waves. Nonlinearity 15 (2002) 1179-1203. | Zbl
,[10] Meandering of spiral waves in anisotropic tissue. Dynam. Contin. Discrete Impuls. Systems B 10 (2003) 29-41. | Zbl
and ,[11] Parallel Newton-Krylov-Schwarz method for solving the anisotropic bidomain equations from the excitation of the heart model. Lecture Notes in Comput. Sci. 2329 (2002) 533-542. | Zbl
and ,[12] Computer modeling in cardiac electrophysiology. J. Comput. Phys. 161 (2000) 21-34. | Zbl
,[13] Computational Biology of the Heart. John Wiley & Sons (1997). | Zbl
and , editors,[14] Finite element methods for modelling impulse propagation in the heart, in Computational Biology of the Heart, A.V. Panfilov and A.V. Holden Eds., John Wiley & Sons (1997) 217-233. | Zbl
, and ,[15] Approximate analytical solutions to the bidomain equations with unequal anisotropy ratio. Phys. Rev. E 55 (1997) 1819-1826.
,[16] Mendering of spiral waves in anisotropic cardiac tissue. Phys. D 150 (2001) 127-136. | Zbl
,[17] Spiral waves on circular and spherical domains of excitable medium. Phys. D 97 (1996) 322-332.
and ,Cité par Sources :