A current procedure that takes into account the Dirichlet boundary condition with non-smooth data is to change it into a Robin type condition by introducing a penalization term; a major effect of this procedure is an easy implementation of the boundary condition. In this work, we deal with an optimal control problem where the control variable is the Dirichlet data. We describe the Robin penalization, and we bound the gap between the penalized and the non-penalized boundary controls for the small penalization parameter. Some numerical results are reported on to highlight the reliability of such an approach.
Mots-clés : boundary control problems, non-smooth Dirichlet condition, Robin penalization, singularly perturbed problem
@article{M2AN_2003__37_5_833_0, author = {Ben Belgacem, Faker and El Fekih, Henda and Metoui, Hejer}, title = {Singular perturbation for the {Dirichlet} boundary control of elliptic problems}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {833--850}, publisher = {EDP-Sciences}, volume = {37}, number = {5}, year = {2003}, doi = {10.1051/m2an:2003057}, mrnumber = {2020866}, zbl = {1051.49012}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an:2003057/} }
TY - JOUR AU - Ben Belgacem, Faker AU - El Fekih, Henda AU - Metoui, Hejer TI - Singular perturbation for the Dirichlet boundary control of elliptic problems JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2003 SP - 833 EP - 850 VL - 37 IS - 5 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an:2003057/ DO - 10.1051/m2an:2003057 LA - en ID - M2AN_2003__37_5_833_0 ER -
%0 Journal Article %A Ben Belgacem, Faker %A El Fekih, Henda %A Metoui, Hejer %T Singular perturbation for the Dirichlet boundary control of elliptic problems %J ESAIM: Modélisation mathématique et analyse numérique %D 2003 %P 833-850 %V 37 %N 5 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an:2003057/ %R 10.1051/m2an:2003057 %G en %F M2AN_2003__37_5_833_0
Ben Belgacem, Faker; El Fekih, Henda; Metoui, Hejer. Singular perturbation for the Dirichlet boundary control of elliptic problems. ESAIM: Modélisation mathématique et analyse numérique, Tome 37 (2003) no. 5, pp. 833-850. doi : 10.1051/m2an:2003057. http://archive.numdam.org/articles/10.1051/m2an:2003057/
[1] Sobolev Spaces. Academic Press, New York (1975). | MR | Zbl
,[2] Asymptotic analysis of some control problems. Asymptot. Anal. 24 (2000) 343-366. | Zbl
, and ,[3] The finite element method with penalty. Math. Comp. 27 (1973) 221-228. | Zbl
,[4] A penalized Robin approach for solving a parabolic equation with nonsmooth Dirichlet boundary conditions. Asymptot. Anal. 34 (2003) 121-136. | Zbl
, and ,[5] Augmented Lagrangian techniques for elliptic state constrained optimal control problems. SIAM J. Control Optim. 35 (1997) 1524-1543. | Zbl
and ,[6] Approximation régularisée d'un problème aux limites non homogène. Séminaire J.-L. Lions 12 (Avril 1969). | Zbl
,[7] Mixed and Hybrid Finite Element Methods. Springer-Verlag (1991). | MR | Zbl
and ,[8] Approssimazione mediante il metodo de penalizazione de problemi misti di Dirichlet-Neumann per operatori lineari ellittici del secondo ordine. Boll. Un. Mat. Ital. A (7) 4 (1973) 229-250. | Zbl
,[9] Approximation of optimal control problems of systems described by boundary value mixed problems of Dirichlet-Neumann type, in 5th IFIP Conference on Optimization Techniques. Springer, Berlin, Lecture Notes in Computer Science 3 (1973) 152-162. | Zbl
,[10] A singularly perturbed mixed boundary value problem. Commun. Partial Differential Equations 21 1919-1949 (1996). | Zbl
and ,[11] Elliptic boundary value problems on corner domains. Smoothness and asymptotics of solutions. Springer-Verlag, Lecture Notes in Math. 1341 (1988). | MR | Zbl
,[12] Singularities in boundary value problems. Masson (1992). | MR | Zbl
,[13] A penalized Neumann control approach for solving an optimal Dirichlet control problem for the Navier-Stokes equations. SIAM J. Control Optim. 20 (1998) 1795-1814. | Zbl
and ,[14] Numerical approximation of optimal flow control problems by a penalty method: error estimates and numerical results. SIAM J. Sci. Comput. 20 (1999) 1753-1777. | Zbl
and ,[15] The Robin problem for the Helmholtz equation as a singular perturbation problem. Numer. Funct. Anal. Optim. 8 (1985) 1-20. | Zbl
,[16] Semidiscrete approximation of hyperbolic boundary value problem with nonhomogeneous Dirichlet boundary conditions. SIAM J. Math. Anal. 20 (1989) 1366-1387. | Zbl
and ,[17] Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. Dunod (1968). | MR | Zbl
,[18] Problèmes aux limites non homogènes et applications, Vols. 1 and 2. Dunod, Paris (1968). | MR | Zbl
and ,[19] Contrôlabilité et observabilité des sytèmes distribués, problèmes et méthodes. Thesis, École Nationale des Ponts et Chaussées. Paris (1995).
,Cité par Sources :