Error estimates for modified local Shepard's formulas in Sobolev spaces
ESAIM: Modélisation mathématique et analyse numérique, Tome 37 (2003) no. 6, pp. 973-989.

Interest in meshfree methods in solving boundary-value problems has grown rapidly in recent years. A meshless method that has attracted considerable interest in the community of computational mechanics is built around the idea of modified local Shepard's partition of unity. For these kinds of applications it is fundamental to analyze the order of the approximation in the context of Sobolev spaces. In this paper, we study two different techniques for building modified local Shepard's formulas, and we provide a theoretical analysis for error estimates of the approximation in Sobolev norms. We derive Jackson-type inequalities for h-p cloud functions using the first construction. These estimates are important in the analysis of Galerkin approximations based on local Shepard's formulas or h-p cloud functions.

DOI : 10.1051/m2an:2003063
Classification : 41A10, 41A17, 65N15, 65N30
Mots-clés : error estimates, Shepard's formulas, Jackson inequalities, Sobolev spaces
@article{M2AN_2003__37_6_973_0,
     author = {Zuppa, Carlos},
     title = {Error estimates for modified local {Shepard's} formulas in {Sobolev} spaces},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {973--989},
     publisher = {EDP-Sciences},
     volume = {37},
     number = {6},
     year = {2003},
     doi = {10.1051/m2an:2003063},
     zbl = {1074.65125},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an:2003063/}
}
TY  - JOUR
AU  - Zuppa, Carlos
TI  - Error estimates for modified local Shepard's formulas in Sobolev spaces
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2003
SP  - 973
EP  - 989
VL  - 37
IS  - 6
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an:2003063/
DO  - 10.1051/m2an:2003063
LA  - en
ID  - M2AN_2003__37_6_973_0
ER  - 
%0 Journal Article
%A Zuppa, Carlos
%T Error estimates for modified local Shepard's formulas in Sobolev spaces
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2003
%P 973-989
%V 37
%N 6
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an:2003063/
%R 10.1051/m2an:2003063
%G en
%F M2AN_2003__37_6_973_0
Zuppa, Carlos. Error estimates for modified local Shepard's formulas in Sobolev spaces. ESAIM: Modélisation mathématique et analyse numérique, Tome 37 (2003) no. 6, pp. 973-989. doi : 10.1051/m2an:2003063. http://archive.numdam.org/articles/10.1051/m2an:2003063/

[1] R.A. Adams, Sobolev Spaces. Academic Press, Inc., Orlando (1975). | MR | Zbl

[2] S.C. Brener and L.R. Scott, The Mathematical Theory of Finite Elements Methods. Springer-Verlag, New York (1994). | MR | Zbl

[3] P.G. Ciarlet, The Finite Elements Method for Elliptic Problems. North-Holland, Amsterdam (1978). | MR | Zbl

[4] C.A. Duarte and J.T. Oden, Hp clouds-a meshless method to solve boundary-value problems. Technical Report 95-05, TICAM, The University of Texas at Austin (1995).

[5] C.A. Duarte and J.T. Oden, H-p clouds-an h-p meshless method. Numer. Methods Partial Differential Equations 1 (1996) 1-34. | Zbl

[6] C.A.M. Duarte, T.J. Liszka and W.W. Tworzydlo, hp-meshless cloud method. Comput. Methods Appl. Mech. Engrg. 139 (1996) 263-288. | Zbl

[7] R.G. Durán, On polynomial approximation in Sobolev spaces. SIAM J. Numer. Anal. 20 (1983) 985-988. | Zbl

[8] W. Han and X. Meng, Error analysis of the reproducing kernel particle method. Comput. Methods Appl. Mech. Engrg. 190 (2001) 6157-6181. | Zbl

[9] Y.Y. Lu, T. Belyschko and L. Gu, Element-free Galerkin methods. Internat. J. Numer. Methods Engrg. 37 (1994) 229-256.

[10] E. Oñate, R. Taylor, O.C. Zienkiewicz and S. Idelshon, Moving least square approximations for the solutions of differential equations. Technical Report, CIMNE, Santa Fé, Argentina (1995).

[11] R.J. Renka, Multivariate interpolation of large sets of scattered data. ACM Trans. Math. Software 14 (1988) 139-148. | Zbl

[12] L.L. Schumaker, Fitting surfaces to scattered data, in Approximation Theory II, Academic Press, Inc., New York (1970). | MR | Zbl

[13] D.D. Shepard, A Two Dimensional Interpolation Function for Irregularly Spaced Data. Proc. 23rd Nat. Conf. ACM (1968).

[14] R. Verfúrth, A note on polynomial approximation in Sobolev spaces. ESAIM: M2AN 33 (1999) 715-719. | Numdam | Zbl

[15] C. Zuppa, Error estimates for modified local Shepard's formulaes. Appl. Numer. Math. (to appear). | Zbl

[16] C. Zuppa, Good quality point sets and error estimates for moving least square approximations. Appl. Numer. Math. 47 (2003) 575-585. | Zbl

Cité par Sources :