Dynamical behavior of Volterra model with mutual interference concerning IPM
ESAIM: Modélisation mathématique et analyse numérique, Tome 38 (2004) no. 1, pp. 143-155.

A Volterra model with mutual interference concerning integrated pest management is proposed and analyzed. By using Floquet theorem and small amplitude perturbation method and comparison theorem, we show the existence of a globally asymptotically stable pest-eradication periodic solution. Further, we prove that when the stability of pest-eradication periodic solution is lost, the system is permanent and there exists a locally stable positive periodic solution which arises from the pest-eradication periodic solution by bifurcation theory. When the unique positive periodic solution loses its stability, numerical simulation shows there is a characteristic sequence of bifurcations, leading to a chaotic dynamics. Finally, we compare the validity of integrated pest management (IPM) strategy with classical methods and conclude IPM strategy is more effective than classical methods.

DOI : 10.1051/m2an:2004007
Classification : 34A37, 92D25
Mots-clés : integrated pest management (IPM), mutual interference, permanence, bifurcation, chaos
@article{M2AN_2004__38_1_143_0,
     author = {Zhang, Yujuan and Liu, Bing and Chen, Lansun},
     title = {Dynamical behavior of {Volterra} model with mutual interference concerning {IPM}},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {143--155},
     publisher = {EDP-Sciences},
     volume = {38},
     number = {1},
     year = {2004},
     doi = {10.1051/m2an:2004007},
     mrnumber = {2073934},
     zbl = {1081.34042},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an:2004007/}
}
TY  - JOUR
AU  - Zhang, Yujuan
AU  - Liu, Bing
AU  - Chen, Lansun
TI  - Dynamical behavior of Volterra model with mutual interference concerning IPM
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2004
SP  - 143
EP  - 155
VL  - 38
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an:2004007/
DO  - 10.1051/m2an:2004007
LA  - en
ID  - M2AN_2004__38_1_143_0
ER  - 
%0 Journal Article
%A Zhang, Yujuan
%A Liu, Bing
%A Chen, Lansun
%T Dynamical behavior of Volterra model with mutual interference concerning IPM
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2004
%P 143-155
%V 38
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an:2004007/
%R 10.1051/m2an:2004007
%G en
%F M2AN_2004__38_1_143_0
Zhang, Yujuan; Liu, Bing; Chen, Lansun. Dynamical behavior of Volterra model with mutual interference concerning IPM. ESAIM: Modélisation mathématique et analyse numérique, Tome 38 (2004) no. 1, pp. 143-155. doi : 10.1051/m2an:2004007. http://archive.numdam.org/articles/10.1051/m2an:2004007/

[1] D.D. Bainov and P.S. Simeonov, Impulsive differential equations: periodic solutions and applications. Wiley, New York (1993). | MR | Zbl

[2] A.J. Cherry, C.J. Lomer, D. Djegui and F. Schulthess, Pathogen incidence and their potential as microbial control agents in IPM of maize stemborers in West Africa. Biocontrol 44 (1999) 301-327.

[3] S.P. Dawson, C. Grebogi and J.A. Yorke, Antimonotonicity: inevitable reversals of period-doubling cascades. Phys. Lett. A 162 (1992) 249-254.

[4] R.L. Edwards, The area of discovery of two insect parasites, Nasonia vitripennis (Walker) and Trichogramma evanescens Westwood, in an artificial environment. Can. Ent. 93 (1961) 475-481.

[5] J. Grasman, O.A. Van Herwaarden, L. Hemerik et al., A two-component model of host-parasitoid interactions: determination of the size of inundative releases of parasitoids in biological pest control. Math. Biosci. 169 (2001) 207-216. | Zbl

[6] C. Grebogi, E. Ott and J.A. York, Crises, sudden changes in chaotic attractors and chaotic transients. Physica D 7 (1983) 181-200. | Zbl

[7] M.P. Hassell, Parasite behavior as a factor contributing to the stability of insect host-parasite interactions, in Dynamics of Population, P.J. den Boer and G.R. Gradwell Eds., Proc. Adv. Study Inst. Oosterbeek (1970).

[8] M.P. Hassell, Mutual interference between searching insect parasites. J. Anim. Ecol. 40 (1971) 473-486.

[9] M.P. Hassell, G.C. Varley, New inductive population model for insect parasites and its bearing on biological control. Nature 223 (1969) 1133-1136.

[10] M.P. Hassell and D.J. Rogers, Insect parasite responses in the development of population models. J. Anim. Ecol. 41 (1972) 661-676.

[11] A. Hasting and K. Higgins, Persistence of transients in spatially structured ecological models. Since 263 (1994) 1133-1136.

[12] C.B. Huffaker, P.S. Messenger and P. De Bach, The natural enemy component in natural control and the theory of biological control, in Biological Control, C.B. Huffaker Ed., Proc. A.A.A.S. Symp. Plenum Press, New York (1969).

[13] Integrated Pest Management for Walnuts, University of California Statewide Integrated Pest Management Project, in Division of Agriculture and Natural Resources, Second Edition, M.L. Flint Ed., University of California, Oakland, CA, publication 3270 (1987).

[14] V. Lakshmikantham, D.D. Bainov and P.S. Simeonov, Theory of impulsive differential equations. World Scientific, Singapore (1989). | MR | Zbl

[15] A. Lakmeche and O. Arino, Bifurcation of non trival periodic solutions of impulsive differential equations arising chemotherapeutic treatment. Dynam. Contin. Discrete Impuls. Systems 7 (2000) 205-287. | Zbl

[16] M.L. Luff, The potential of predators for pest control. Agri. Ecos. Environ. 10 (1983) 159-181.

[17] D.J. Rogers, Random search and insect population models. J. Anim. Ecol. 41 (1972) 369-383.

[18] University of California, Division of Agriculture and Natural Resources, Integrated Pest Management for Alfafa hay. Publications, Division of Agriculture and Nature Resources, University of Califania, Oakland, CA, publication 3312 (1981).

[19] J.C. Van Lenteren, Integrated pest management in protected crops, in Integrated pest management, D. Dent Ed., Chapman & Hall, London (1995).

[20] P.L. Wu, Stability of Volterra model with mutual interference. J. Jiangxi Norm. Univ. 2 (1986) 42-45. | Zbl

Cité par Sources :