Convergence of a high-order compact finite difference scheme for a nonlinear Black-Scholes equation
ESAIM: Modélisation mathématique et analyse numérique, Tome 38 (2004) no. 2, pp. 359-369.

A high-order compact finite difference scheme for a fully nonlinear parabolic differential equation is analyzed. The equation arises in the modeling of option prices in financial markets with transaction costs. It is shown that the finite difference solution converges locally uniformly to the unique viscosity solution of the continuous equation. The proof is based on a careful study of the discretization matrices and on an abstract convergence result due to Barles and Souganides.

DOI : 10.1051/m2an:2004018
Classification : 49L25, 65M06, 65M12
Mots clés : high-order compact finite differences, numerical convergence, viscosity solution, financial derivatives
@article{M2AN_2004__38_2_359_0,
     author = {D\"uring, Bertram and Fourni\'e, Michel and J\"ungel, Ansgar},
     title = {Convergence of a high-order compact finite difference scheme for a nonlinear {Black-Scholes} equation},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {359--369},
     publisher = {EDP-Sciences},
     volume = {38},
     number = {2},
     year = {2004},
     doi = {10.1051/m2an:2004018},
     zbl = {1124.91031},
     mrnumber = {2069151},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an:2004018/}
}
TY  - JOUR
AU  - Düring, Bertram
AU  - Fournié, Michel
AU  - Jüngel, Ansgar
TI  - Convergence of a high-order compact finite difference scheme for a nonlinear Black-Scholes equation
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2004
SP  - 359
EP  - 369
VL  - 38
IS  - 2
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an:2004018/
DO  - 10.1051/m2an:2004018
LA  - en
ID  - M2AN_2004__38_2_359_0
ER  - 
%0 Journal Article
%A Düring, Bertram
%A Fournié, Michel
%A Jüngel, Ansgar
%T Convergence of a high-order compact finite difference scheme for a nonlinear Black-Scholes equation
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2004
%P 359-369
%V 38
%N 2
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an:2004018/
%R 10.1051/m2an:2004018
%G en
%F M2AN_2004__38_2_359_0
Düring, Bertram; Fournié, Michel; Jüngel, Ansgar. Convergence of a high-order compact finite difference scheme for a nonlinear Black-Scholes equation. ESAIM: Modélisation mathématique et analyse numérique, Tome 38 (2004) no. 2, pp. 359-369. doi : 10.1051/m2an:2004018. http://archive.numdam.org/articles/10.1051/m2an:2004018/

[1] G. Barles and B. Perthame, Discontinuous solutions of deterministic optimal stopping time problems. RAIRO Modél. Math. Anal. Numér. 21 (1987) 557-579. | EuDML | Numdam | MR | Zbl

[2] G. Barles and B. Perthame, Exit time problems in optimal control and vanishing viscosity method. SIAM J. Control Optim. 26 (1988) 1133-1148. | MR | Zbl

[3] G. Barles and H.M. Soner, Option pricing with transaction costs and a nonlinear Black-Scholes equation. Finance Stoch. 2 (1998) 369-397. | MR | Zbl

[4] G. Barles and P.E. Souganides, Convergence of approximation schemes for fully nonlinear second order equations. Asympt. Anal. 4 (1991) 271-283. | MR | Zbl

[5] G. Barles, Ch. Daher and M. Romano, Convergence of numerical schemes for parabolic equations arising in finance theory. Math. Models Meth. Appl. Sci. 5 (1995) 125-143. | MR | Zbl

[6] F. Black and M. Scholes, The pricing of options and corporate liabilities. J. Polit. Econ. 81 (1973) 637-659. | MR | Zbl

[7] R. Bodenmann and H.J. Schroll, Compact difference methods applied to initial-boundary value problems for mixed systems. Numer. Math. 73 (1996) 291-309. | MR | Zbl

[8] P. Boyle and T. Vorst, Option replication in discrete time with transaction costs. J. Finance 47 (1973) 271-293.

[9] G.M. Constantinides and T. Zariphopoulou, Bounds on process of contingent claims in an intertemporal economy with proportional transaction costs and general preferences. Finance Stoch. 3 (1999) 345-369. | MR | Zbl

[10] M. Crandall and P.L. Lions, Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 277 (1983) 1-42. | Zbl

[11] M. Crandall, H. Ishii and P.L. Lions, User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. 27 (1992) 1-67. | Zbl

[12] M. Davis, V. Panis and T. Zariphopoulou, European option pricing with transaction fees. SIAM J. Control Optim. 31 (1993) 470-493. | Zbl

[13] B. Düring, M. Fournié and A. Jüngel, High order compact finite difference schemes for a nonlinear Black-Scholes equation. Int. J. Appl. Theor. Finance 6 (2003) 767-789. | Zbl

[14] R. Frey, Perfect option hedging for a large trader. Finance Stoch. 2 (1998) 115-141. | Zbl

[15] R. Frey, Market illiquidity as a source of model risk in dynamic hedging, in Model Risk, R. Gibson Ed., RISK Publications, London (2000).

[16] G. Genotte and H. Leland, Market liquidity, hedging and crashes. Amer. Econ. Rev. 80 (1990) 999-1021.

[17] S.D. Hodges and A. Neuberger, Optimal replication of contingent claims under transaction costs. Rev. Future Markets 8 (1989) 222-239.

[18] V.P. Il'In, On high-order compact difference schemes. Russ. J. Numer. Anal. Math. Model. 15 (2000) 29-46. | Zbl

[19] H. Ishii, A boundary value problem of the Dirichlet type for Hamilton-Jacobi equations. Ann. Scuola Norm. Sup. Pisa 16 (1989) 105-135. | Numdam | Zbl

[20] R. Jarrow, Market manipulation, bubbles, corners and short squeezes. J. Financial Quant. Anal. 27 (1992) 311-336.

[21] P. Kangro and R. Nicolaides, Far field boundary conditions for Black-Scholes equations. SIAM J. Numer. Anal. 38 (2000) 1357-1368. | Zbl

[22] D. Lamberton and B. Lapeyre, Introduction au calcul stochastique appliqué à la finance1997). | MR

[23] J. Leitner, Continuous time CAPM, price for risk and utility maximization, in Mathematical Finance. Workshop of the Mathematical Finance Research Project, Konstanz, Germany, M. Kohlmann et al. Eds., Birkhäuser, Basel (2001). | MR | Zbl

[24] R.C. Merton, Theory of rational option pricing. Bell J. Econ. Manag. Sci. 4 (1973) 141-183.

[25] D. Michelson, Convergence theorem for difference approximations of hyperbolic quasi-linear initial-boundary value problems. Math. Comput. 49 (1987) 445-459. | Zbl

[26] E. Platen and M. Schweizer, On feedback effects from hedging derivatives. Math. Finance 8 (1998) 67-84. | Zbl

[27] A. Rigal, High order difference schemes for unsteady one-dimensional diffusion-convection problems. J. Comp. Phys. 114 (1994) 59-76. | Zbl

[28] P. Schönbucher and P. Wilmott, The feedback effect of hedging in illiquid markets. SIAM J. Appl. Math. 61 (2000) 232-272. | Zbl

[29] H.M. Soner, S.E. Shreve and J. Cvitanic, There is no nontrivial hedging portfolio for option pricing with transaction costs. Ann. Appl. Probab. 5 (1995) 327-355. | Zbl

[30] G. Strang, Accurate partial difference methods. II: Non-linear problems. Numer. Math. 6 (1964) 37-46. | Zbl

[31] C. Wang and J. Liu, Fourth order convergence of compact finite difference solver for 2D incompressible flow. Commun. Appl. Anal. 7 (2003) 171-191. | Zbl

[32] A. Whalley and P. Wilmott, An asymptotic analysis of an optimal hedging model for option pricing with transaction costs. Math. Finance 7 (1997) 307-324. | Zbl

Cité par Sources :