A coupled finite/boundary element method to approximate the free vibration modes of an elastic structure containing an incompressible fluid is analyzed in this paper. The effect of the fluid is taken into account by means of one of the most usual procedures in engineering practice: an added mass formulation, which is posed in terms of boundary integral equations. Piecewise linear continuous elements are used to discretize the solid displacements and the fluid-solid interface variables. Spectral convergence is proved and error estimates are settled for the approximate eigenfunctions and their corresponding vibration frequencies. Implementation issues are also discussed and numerical experiments are reported.
Mots clés : fluid-structure interaction, hydroelasticity, added mass, BEM/FEM
@article{M2AN_2004__38_4_653_0, author = {Barrientos, Mauricio A. and Gatica, Gabriel N. and Rodr{\'\i}guez, Rodolfo and Torrej\'on, Marcela E.}, title = {Analysis of a coupled {BEM/FEM} eigensolver for the hydroelastic vibrations problem}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {653--672}, publisher = {EDP-Sciences}, volume = {38}, number = {4}, year = {2004}, doi = {10.1051/m2an:2004028}, mrnumber = {2087728}, zbl = {1077.74054}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an:2004028/} }
TY - JOUR AU - Barrientos, Mauricio A. AU - Gatica, Gabriel N. AU - Rodríguez, Rodolfo AU - Torrejón, Marcela E. TI - Analysis of a coupled BEM/FEM eigensolver for the hydroelastic vibrations problem JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2004 SP - 653 EP - 672 VL - 38 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an:2004028/ DO - 10.1051/m2an:2004028 LA - en ID - M2AN_2004__38_4_653_0 ER -
%0 Journal Article %A Barrientos, Mauricio A. %A Gatica, Gabriel N. %A Rodríguez, Rodolfo %A Torrejón, Marcela E. %T Analysis of a coupled BEM/FEM eigensolver for the hydroelastic vibrations problem %J ESAIM: Modélisation mathématique et analyse numérique %D 2004 %P 653-672 %V 38 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an:2004028/ %R 10.1051/m2an:2004028 %G en %F M2AN_2004__38_4_653_0
Barrientos, Mauricio A.; Gatica, Gabriel N.; Rodríguez, Rodolfo; Torrejón, Marcela E. Analysis of a coupled BEM/FEM eigensolver for the hydroelastic vibrations problem. ESAIM: Modélisation mathématique et analyse numérique, Tome 38 (2004) no. 4, pp. 653-672. doi : 10.1051/m2an:2004028. http://archive.numdam.org/articles/10.1051/m2an:2004028/
[1] An adaptive finite element scheme to solve fluid-structure vibration problems on non-matching grids. Comput. Visual. Sci. 4 (2001) 67-78. | Zbl
, , , and ,[2] Eigenvalue problems, in Handbook of Numerical Analysis, P.G. Ciarlet and J.L. Lions Eds., Vol. II, North-Holland, Amsterdam (1991) 641-787. | Zbl
and ,[3] Finite element solution of incompressible fluid-structure vibration problems. Internat. J. Numer. Methods Eng. 40 (1997) 1435-1448.
, and ,[4] Finite element analysis of compressible and incompressible fluid-solid systems, Math. Comp. 67 (1998) 111-136. | Zbl
, and ,[5] Finite element analysis of sloshing and hydroelastic vibrations under gravity. ESAIM: M2AN 33 (1999) 305-327. | Numdam | Zbl
and ,[6] A finite element solution of an added mass formulation for coupled fluid-solid vibrations. Numer. Math. 87 (2000) 201-227. | Zbl
, and ,[7] Basic error estimates for elliptic problems, in Handbook of Numerical Analysis, P.G. Ciarlet and J.L. Lions Eds., Vol. II, North-Holland, Amsterdam (1991) 17-351. | Zbl
,[8] Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal. 19 (1988) 613-621. | Zbl
,[9] On the version of the boundary element method for Symm’s integral equation on polygons. Comput. Methods Appl. Mech. Eng. 110 (1993) 25-38. | Zbl
, and ,[10] Boundary-Field Equation Methods for a Class of Nonlinear Problems. Longman, Harlow, Pitman Res. Notes Math. Ser. 331 (1995). | MR | Zbl
and ,[11] Elliptic Problems in Nonsmooth Domains. Pitman, Boston, MA, Monogr. Stud. Math. 24 (1985). | MR | Zbl
,[12] A displacement method for the analysis of vibrations of coupled fluid-structure systems. Internat. J. Numer. Methods Eng. 13 (1978) 139-150. | Zbl
, and ,[13] On the boundary-field equation methods for fluid-structure interactions, in Problems and Methods in Mathematical Physics (Chemnitz, 1993), L. Jentsch and F. Tröltzsch, Eds. Teubner, Stuttgart, Teubner-Texte Math. 134 (1994) 79-88. | Zbl
,[14] A finite element method for some integral equations of the first kind. J. Math. Anal. Appl. 58 (1977) 449-481. | Zbl
and ,[15] Weak solutions of fluid-solid interaction problems. Math. Nachr. 218 (2000) 139-163. | Zbl
, and ,[16] On variational formulations of boundary value problems for fluid-solid interactions. Elastic Wave Propagation (Galway, 1988). North-Holland, Amsterdam, North-Holland Ser. Appl. Math. Mech. 35 (1989) 321-326.
, and ,[17] Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000). | MR | Zbl
,[18] Some systems of PDE on polygonal networks, in Partial Differential Equations on Multistructures (Luminy, 1999), F.A. Mehmeti, J. von Below and S. Nicaise Eds., Dekker, New York, Lect. Notes Pure Appl. Math. 219 (2001) 163-182. | Zbl
,[19] Problèmes de transmission sur des réseaux polygonaux pour des systèmes d'EDP. Ann. Fac. Sci. Toulouse Math. 10 (2001) 107-162. | Numdam | Zbl
,[20] Fluid-Structure Interaction. J. Wiley & Sons, Chichester (1995). | Zbl
and ,[21] Eigenvalue and eigenfunction error estimates for finite element formulations of linear hydroelasticity. Math. Comp. 70 (2001) 471-487. | Zbl
,[22] Solución Numérica de Problemas de Vibraciones Hidroelásticas. Degree Thesis in Mathematical Engineering, Universidad de Concepción, Chile (2003).
,[23] The Finite Element Method. Mc Graw Hill, London (1989). | Zbl
and ,Cité par Sources :