We consider a fully practical finite element approximation of the following degenerate system
Mots-clés : Stefan problem, Joule heating, degenerate system, finite elements, convergence
@article{M2AN_2004__38_4_633_0, author = {Barrett, John W. and N\"urnberg, Robert}, title = {Finite element approximation of a {Stefan} problem with degenerate {Joule} heating}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {633--652}, publisher = {EDP-Sciences}, volume = {38}, number = {4}, year = {2004}, doi = {10.1051/m2an:2004030}, mrnumber = {2087727}, zbl = {1072.80010}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an:2004030/} }
TY - JOUR AU - Barrett, John W. AU - Nürnberg, Robert TI - Finite element approximation of a Stefan problem with degenerate Joule heating JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2004 SP - 633 EP - 652 VL - 38 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an:2004030/ DO - 10.1051/m2an:2004030 LA - en ID - M2AN_2004__38_4_633_0 ER -
%0 Journal Article %A Barrett, John W. %A Nürnberg, Robert %T Finite element approximation of a Stefan problem with degenerate Joule heating %J ESAIM: Modélisation mathématique et analyse numérique %D 2004 %P 633-652 %V 38 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an:2004030/ %R 10.1051/m2an:2004030 %G en %F M2AN_2004__38_4_633_0
Barrett, John W.; Nürnberg, Robert. Finite element approximation of a Stefan problem with degenerate Joule heating. ESAIM: Modélisation mathématique et analyse numérique, Tome 38 (2004) no. 4, pp. 633-652. doi : 10.1051/m2an:2004030. http://archive.numdam.org/articles/10.1051/m2an:2004030/
[1] A finite element method on a fixed mesh for the Stefan problem with convection in a saturated porous medium, in Numerical Methods for Fluid Dynamics, K.W. Morton and M.J. Baines Eds., Academic Press (London) (1982) 389-409. | Zbl
and ,[2] Convergence of a finite element approximation of surfactant spreading on a thin film in the presence of van der Waals forces. IMA J. Numer. Anal. 24 (2004) 323-363. | Zbl
and ,[3] On the finite element approximation of an elliptic variational inequality arising from an implicit time discretization of the Stefan problem. IMA J. Numer. Anal. 1 (1981) 115-125. | Zbl
,[4] Error analysis of the enthalpy method for the Stefan problem. IMA J. Numer. Anal. 7 (1987) 61-71. | Zbl
,[5] A finite element model for the time-dependent Joule heating problem. Math. Comp. 64 (1995) 1433-1453. | Zbl
and ,[6] Existence of generalized weak solutions to a model for in situ vitrification. European J. Appl. Math. 9 (1998) 543-559. | Zbl
, and ,[7] Modeling of the in situ vitrification process. Amer. Ceram. Soc. Bull. 70 (1991) 832-835.
and ,[8] Compact sets in the space . Ann. Math. Pura. Appl. 146 (1987) 65-96. | Zbl
,[9] A compactness theorem and its application to a system of partial differential equations. Differential Integral Equations 9 (1996) 119-136. | Zbl
,[10] Existence for a model arising from the in situ vitrification process. J. Math. Anal. Appl. 271 (2002) 333-342. | Zbl
,Cité par Sources :