In this paper we study a model problem describing the movement of a glacier under Glen's flow law and investigated by Colinge and Rappaz [Colinge and Rappaz, ESAIM: M2AN 33 (1999) 395-406]. We establish error estimates for finite element approximation using the results of Chow [Chow, SIAM J. Numer. Analysis 29 (1992) 769-780] and Liu and Barrett [Liu and Barrett, SIAM J. Numer. Analysis 33 (1996) 98-106] and give an analysis of the convergence of the successive approximations used in [Colinge and Rappaz, ESAIM: M2AN 33 (1999) 395-406]. Supporting numerical convergence studies are carried out and we also demonstrate the numerical performance of an a posteriori error estimator in adaptive mesh refinement computation of the problem.
Mots-clés : Glen's flow law, non-newtonian fluids, finite element error estimates, successive approximations
@article{M2AN_2004__38_5_741_0, author = {Chow, Sum S. and Carey, Graham F. and Anderson, Michael L.}, title = {Finite element approximations of a glaciology problem}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {741--756}, publisher = {EDP-Sciences}, volume = {38}, number = {5}, year = {2004}, doi = {10.1051/m2an:2004033}, mrnumber = {2104426}, zbl = {1130.86300}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an:2004033/} }
TY - JOUR AU - Chow, Sum S. AU - Carey, Graham F. AU - Anderson, Michael L. TI - Finite element approximations of a glaciology problem JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2004 SP - 741 EP - 756 VL - 38 IS - 5 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an:2004033/ DO - 10.1051/m2an:2004033 LA - en ID - M2AN_2004__38_5_741_0 ER -
%0 Journal Article %A Chow, Sum S. %A Carey, Graham F. %A Anderson, Michael L. %T Finite element approximations of a glaciology problem %J ESAIM: Modélisation mathématique et analyse numérique %D 2004 %P 741-756 %V 38 %N 5 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an:2004033/ %R 10.1051/m2an:2004033 %G en %F M2AN_2004__38_5_741_0
Chow, Sum S.; Carey, Graham F.; Anderson, Michael L. Finite element approximations of a glaciology problem. ESAIM: Modélisation mathématique et analyse numérique, Tome 38 (2004) no. 5, pp. 741-756. doi : 10.1051/m2an:2004033. http://archive.numdam.org/articles/10.1051/m2an:2004033/
[1] Velocity and stress fields in grounded glaciers: A simple algorithm for including deviatoric stress gradients. J. Glaciology 41 (1995) 333-344.
,[2] Computational Grids: Generation, Adaptation and Solution Strategies. Taylor & Francis (1997). | MR | Zbl
,[3] Finite element error estimates for nonlinear elliptic equations of monotone type. Numer. Math. 54 (1989) 373-393. | Zbl
,[4] Finite element error estimates for a blast furnace gas flow problem. SIAM J. Numer. Analysis 29 (1992) 769-780. | Zbl
,[5] Numerical approximation of generalized Newtonian fluids using Heindl elements: I. Theoretical estimates. Internat. J. Numer. Methods Fluids 41 (2003) 1085-1118. | Zbl
and ,[6] Stress and velocity fields in glaciers: Part I. Finite-difference schemes for higher-order glacier models. J. Glaciology 44 (1998) 448-456.
and ,[7] A strongly nonlinear problem arising in glaciology. ESAIM: M2AN 33 (1999) 395-406. | Numdam | Zbl
and ,[8] The Flow Law of Ice, Internat. Assoc. Sci. Hydrology Pub. 47, Symposium at Chamonix 1958 - Physics of the Movement of the Ice (1958) 171-183.
,[9] Approximation of a nonlinear elliptic problem arising in a non-Newtonian fluid flow model in glaciology. ESAIM: M2AN 37 (2003) 175-186. | Numdam | Zbl
and ,[10] The Kačanov method for some nonlinear problems. Appl. Num. Anal. 24 (1997) 57-79. | Zbl
, and ,[11] Error estimates for a finite element approximation of a minimal surface. Math. Comp. 29 (1975) 343-349. | Zbl
and ,[12] Finite element approximation of some degenerate monotone quasilinear elliptic systems. SIAM J. Numer. Analysis 33 (1996) 98-106. | Zbl
and ,[13] The Physics of Glaciers, 2nd edition. Pergamon Press (1981).
,[14] Nonlinear Functional Analysis and Its Applications II/B. Nonlinear Monotone Operators, Springer-Verlag (1990). | MR | Zbl
,Cité par Sources :