In this paper, we consider a multi-lithology diffusion model used in stratigraphic modelling to simulate large scale transport processes of sediments described as a mixture of lithologies. This model is a simplified one for which the surficial fluxes are proportional to the slope of the topography and to a lithology fraction with unitary diffusion coefficients. The main unknowns of the system are the sediment thickness , the surface concentrations in lithology of the sediments at the top of the basin, and the concentrations in lithology of the sediments inside the basin. For this simplified model, the sediment thickness decouples from the other unknowns and satisfies a linear parabolic equation. The remaining equations account for the mass conservation of the lithologies, and couple, for each lithology, a first order linear equation for with a linear advection equation for for which appears as an input boundary condition. For this coupled system, a weak formulation is introduced which is shown to have a unique solution. An implicit finite volume scheme is derived for which we show stability estimates and the convergence to the weak solution of the problem.
Mots-clés : finite volume method, stratigraphic modelling, linear first order equations, convergence analysis, linear advection equation, unique weak solution, adjoint problem
@article{M2AN_2004__38_4_585_0, author = {Gervais, V\'eronique and Masson, Roland}, title = {Mathematical and numerical analysis of a stratigraphic model}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {585--611}, publisher = {EDP-Sciences}, volume = {38}, number = {4}, year = {2004}, doi = {10.1051/m2an:2004035}, mrnumber = {2087725}, zbl = {1130.86315}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an:2004035/} }
TY - JOUR AU - Gervais, Véronique AU - Masson, Roland TI - Mathematical and numerical analysis of a stratigraphic model JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2004 SP - 585 EP - 611 VL - 38 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an:2004035/ DO - 10.1051/m2an:2004035 LA - en ID - M2AN_2004__38_4_585_0 ER -
%0 Journal Article %A Gervais, Véronique %A Masson, Roland %T Mathematical and numerical analysis of a stratigraphic model %J ESAIM: Modélisation mathématique et analyse numérique %D 2004 %P 585-611 %V 38 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an:2004035/ %R 10.1051/m2an:2004035 %G en %F M2AN_2004__38_4_585_0
Gervais, Véronique; Masson, Roland. Mathematical and numerical analysis of a stratigraphic model. ESAIM: Modélisation mathématique et analyse numérique, Tome 38 (2004) no. 4, pp. 585-611. doi : 10.1051/m2an:2004035. http://archive.numdam.org/articles/10.1051/m2an:2004035/
[1] Interaction of Weathering and Transport Processes in the Evolution of Arid Landscapes, in Quantitative Dynamics Stratigraphy, T.A. Cross Ed., Prentice Hall (1989) 349-361.
and ,[2] Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels ; théorèmes d'approximation ; application à l'équation de transport. Ann. Sci. École Norm. Sup. 3 (1971) 185-233. | Numdam | Zbl
,[3] An up-to-the boundary version of Friedrichs' lemma and applications to the linear Koiter shell model. SIAM J. Math. Anal. 33 (2001) 877-895. | Zbl
, ,[4] Convergence of a numerical scheme for stratigraphic modeling. SIAM J. Numer. Anal. submitted. | MR | Zbl
, , and ,[5] Multi-lithology stratigraphic model under maximum erosion rate constraint. Int. J. Numer. Meth. Eng. 60 (2004) 527-548. | Zbl
, , , and ,[6] A synthetic stratigraphic model of foreland basin development. J. Geophys. Res. 94 (1989) 3851-3866.
and ,[7] Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer (1996). | MR | Zbl
and ,[8] Modélisation Stratigraphique Déterministe: Conception et Applications d'un Modèle Diffusif 3D Multilithologique. Ph.D. Thesis, Géosciences Rennes, Rennes, France (1997).
,[9] Concepts and applications of a 3D multiple lithology, diffusive model in stratigraphic modeling, in J.W. Harbaugh et al. Eds., Numerical Experiments in Stratigraphy, SEPM Sp. Publ. 62 (1999).
and ,[10] Morphology of a delta prograding by bulk sediment transport, Geological Society of America Bulletin 96 (1985) 1457-1465.
and ,[11] Linear and quasilinear equations of parabolic type. Transl. Math. Monogr. 23 (1968). | Zbl
, and ,[12] Application of a dual lithology, depth-dependent diffusion equation in stratigraphic simulation. Basin Research 4 (1992) 133-146.
,[13] Impact of sediment transport efficiency on large-scale sequence architecture: results from stratigraphic computer simulation. Basin Research 9 (1997) 91-105.
,[14] Simulating Clastic Sedimentation. Van Norstrand Reinhold, New York (1989).
and ,[15] Erosional dynamics, flexural isostasy, and long-lived escarpments: A numerical modeling study. J. Geophys. Res. 99 (1994) 229-243.
and ,Cité par Sources :