This paper provides new results of consistence and convergence of the lumped parameters (ODE models) toward one-dimensional (hyperbolic or parabolic) models for blood flow. Indeed, lumped parameter models (exploiting the electric circuit analogy for the circulatory system) are shown to discretize continuous 1D models at first order in space. We derive the complete set of equations useful for the blood flow networks, new schemes for electric circuit analogy, the stability criteria that guarantee the convergence, and the energy estimates of the limit 1D equations.
Mots-clés : multiscale modelling, parabolic equations, hyperbolic systems, lumped parameters models, blood flow modelling
@article{M2AN_2004__38_4_613_0, author = {Mili\v{s}i\'c, Vuk and Quarteroni, Alfio}, title = {Analysis of lumped parameter models for blood flow simulations and their relation with {1D} models}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {613--632}, publisher = {EDP-Sciences}, volume = {38}, number = {4}, year = {2004}, doi = {10.1051/m2an:2004036}, mrnumber = {2087726}, zbl = {1079.76053}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an:2004036/} }
TY - JOUR AU - Milišić, Vuk AU - Quarteroni, Alfio TI - Analysis of lumped parameter models for blood flow simulations and their relation with 1D models JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2004 SP - 613 EP - 632 VL - 38 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an:2004036/ DO - 10.1051/m2an:2004036 LA - en ID - M2AN_2004__38_4_613_0 ER -
%0 Journal Article %A Milišić, Vuk %A Quarteroni, Alfio %T Analysis of lumped parameter models for blood flow simulations and their relation with 1D models %J ESAIM: Modélisation mathématique et analyse numérique %D 2004 %P 613-632 %V 38 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an:2004036/ %R 10.1051/m2an:2004036 %G en %F M2AN_2004__38_4_613_0
Milišić, Vuk; Quarteroni, Alfio. Analysis of lumped parameter models for blood flow simulations and their relation with 1D models. ESAIM: Modélisation mathématique et analyse numérique, Tome 38 (2004) no. 4, pp. 613-632. doi : 10.1051/m2an:2004036. http://archive.numdam.org/articles/10.1051/m2an:2004036/
[1] Multibranched model of the human arterial system. Med. Biol. Eng. Comput. 18 (1980) 709-119.
,[2] Numerical solutions for unsteady gravity-driven flows in collapsible tubes: evolution and roll-wave instability of a steady state. J. Fluid Mech. 396 (1999) 223-256. | Zbl
, and ,[3] Mathematical analysis of quasilinear effects in a hyperbolic model of blood flow through compliant axi-symmetric vessels. Math. Meth. Appl. Sci. 26 (2003) 1161-1186. | Zbl
and ,[4] Effective equations modeling the flow of a viscous incompressible fluid through a long elastic tube arising in the study of blood flow through small arteries. SIAM J. Appl. Dyn. Sys. 2 (2003) 431-463. | Zbl
and ,[5] Self-consistent effective equations modeling blood flow in medium-to-large compliant arteries. SIAM MMS (2004) (to appear). | Zbl
, , and ,[6] An electrical analogue of the entire human circulatory system. Med. Electron. Biol. Engng. 2 (1964) 161-166.
and ,[7] Basic Circuit Theory. McGraw-Hill (1969).
and ,[8] On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels. Comput. Methods Appl. Mech. Engrg. 191 (2001) 561-582. | Zbl
, , and ,[9] Reduced and multiscale models for the human cardiovascular system. Technical report, PoliMI, Milan (June 2003). Collection of two lecture notes given at the VKI Lecture Series 2003-07, Brussels 2003.
and ,[10] Hyperbolic systems of conservation laws. Math. Appl., 3/4. Ellipses, Paris (1991). | MR | Zbl
and ,[11] Electromechanical Transducers and Wave Filters (1942).
,[12] Modeling of the norwood circulation: effects of shunt size, vascular resistances, and heart rate. Am. J. Physiol. Heart Circ. Physiol. 280 (2001) H2076-H2086.
, , , , , , , and ,[13] Coupling between linear parabolic and hyperbolic systems of equations for blood flow simulations, in preparation.
and ,[14] Numerical Mathematics, 37 Texts Appl. Math. Springer-Verlag, New York (2000). | MR | Zbl
, and ,[15] Difference-differential equations for fluid flow in distensible tubes. IEEE Trans. Biomed. Eng. BME-14 (1967) 171-177.
and ,[16] Role and relevancy of a cardiovascular simulator. J. Cardiovasc. Eng. 3 (1998) 48-56.
, , and ,[17] One-dimensional modelling of a vascular network in space-time variables. J. Engng. Math. 47 (2003) 217-250.
, , and ,[18] An anatomically based model of transient coronary blood flow in the heart. SIAM J. Appl. Math. 62 (2001/02) 990-1018 (electronic). | Zbl
, and ,[19] Diastolic-systolic coronary flow differences are caused by intramyocardial pump action in the anesthetized dog. Circ. Res. 49 (1981) 584-593.
, and ,[20] Computer simulation of arterial flow with applications to arterial and aortic stenoses. J. Biomech. 25 (1992) 1477-1488.
, and ,[21] Finite difference schemes and partial differential equations. The Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA (1989). | MR | Zbl
,[22] Analog studies of the human systemic arterial tree. J. Biomechanics 2 (1969) 121-143.
, , and ,[23] Viscous Fluid Flow. McGraw-Hill (1986). | Zbl
,Cité par Sources :