A linearly convergent iterative algorithm that approximates the rank-1 convex envelope of a given function , i.e. the largest function below which is convex along all rank-1 lines, is established. The proposed algorithm is a modified version of an approximation scheme due to Dolzmann and Walkington.
Mots-clés : nonconvex variational problem, calculus of variations, relaxed variational problems, rank-1 convex envelope, microstructure, iterative algorithm
@article{M2AN_2004__38_5_811_0, author = {Bartels, S\"oren}, title = {Linear convergence in the approximation of rank-one convex envelopes}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {811--820}, publisher = {EDP-Sciences}, volume = {38}, number = {5}, year = {2004}, doi = {10.1051/m2an:2004040}, mrnumber = {2104430}, zbl = {1083.65058}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an:2004040/} }
TY - JOUR AU - Bartels, Sören TI - Linear convergence in the approximation of rank-one convex envelopes JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2004 SP - 811 EP - 820 VL - 38 IS - 5 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an:2004040/ DO - 10.1051/m2an:2004040 LA - en ID - M2AN_2004__38_5_811_0 ER -
%0 Journal Article %A Bartels, Sören %T Linear convergence in the approximation of rank-one convex envelopes %J ESAIM: Modélisation mathématique et analyse numérique %D 2004 %P 811-820 %V 38 %N 5 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an:2004040/ %R 10.1051/m2an:2004040 %G en %F M2AN_2004__38_5_811_0
Bartels, Sören. Linear convergence in the approximation of rank-one convex envelopes. ESAIM: Modélisation mathématique et analyse numérique, Tome 38 (2004) no. 5, pp. 811-820. doi : 10.1051/m2an:2004040. http://archive.numdam.org/articles/10.1051/m2an:2004040/
[1] A version of the fundamental theorem for Young measures. Partial differential equations and continuum models of phase transitions. M Rascle, D. Serre, M. Slemrod Eds. Lect. Notes Phys. 344 (1989) 207-215. | Zbl
,[2] Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal. 100 (1987) 13-52. | Zbl
and ,[3] Reliable and efficient approximation of polyconvex envelopes. SIAM J. Numer. Anal. (accepted) [Preprints of the DFG Priority Program “Multiscale Problems”, No. 76 (2002) (http://www.mathematik.uni-stuttgart.de/~mehrskalen/)]. | Zbl
,[4] Error estimates for adaptive Young measure approximation in scalar nonconvex variational problems. SIAM J. Numer. Anal. 42 (2004) 505-529. | Zbl
,[5] Multiscale resolution in the computation of crystalline microstructure. Numer. Math. 96 (2004) 641-660. | Zbl
and ,[6] Numerical solution of the scalar double-well problem allowing microstructure. Math. Comp. 66 (1997) 997-1026. | Zbl
and ,[7] Numerical approximation of Young measures in non-convex variational problems. Numer. Math. 84 (2000) 395-414. | Zbl
and ,[8] Sharp energy estimates for finite element approximations of non-convex problems, in Variations of domain and free boundary problems, in solid mechanics, Solid Mech. Appl. 66 (1997) 317-327.
and ,[9] Direct methods in the calculus of variations. Appl. Math. Sci. 78 (1989). | MR | Zbl
,[10] Some numerical methods for the study of the convexity notions arising in the calculus of variations. RAIRO Modél. Math. Anal. Numér. 32 (1998) 153-175. | Numdam | Zbl
and ,[11] Numerical computation of rank-one convex envelopes. SIAM J. Numer. Anal. 36 (1999) 1621-1635. | Zbl
,[12] Estimates for numerical approximations of rank one convex envelopes. Numer. Math. 85 (2000) 647-663. | Zbl
and ,[13] Constitutive theory for some constrained elastic crystals. Int. J. Solids Struct. 22 (1986) 951-964. | Zbl
,[14] On the calculation of microstructures for inelastic materials using relaxed energies. IUTAM symposium on computational mechanics of solid materials at large strains, C. Miehe Ed., Solid Mech. Appl. 108 (2003) 77-86. | Zbl
and ,[15] The relaxation of a double-well energy. Contin. Mech. Thermodyn. 3 (1991) 193-236. | Zbl
,[16] Optimal design and relaxation of variational problems. I.-III. Commun. Pure Appl. Math. 39 (1986) 353-377. | Zbl
and ,[17] Numerical approach to double well problems. SIAM J. Numer. Anal. 35 (1998) 1833-1849. | Zbl
,[18] On the computation of crystalline microstructure. Acta Numerica 5 (1996) 191-257. | Zbl
,[19] Analysis of micro-structure development in shearbands by energy relaxation of incremental stress potentials: large-strain theory for standard dissipative materials. Internat. J. Numer. Methods Engrg. 58 (2003) 1-41. | Zbl
and ,[20] Variational models for microstructure and phase transitions. Lect. Notes Math. 1713 (1999) 85-210. | Zbl
,[21] Numerical methods for a nonconvex optimization problem modeling martensitic microstructure. SIAM J. Sci. Comput. 18 (1997) 1122-1141. | Zbl
, and ,[22] Relaxation in optimization theory and variational calculus. De Gruyter Series in Nonlinear Analysis Appl. 4 New York (1997). | MR | Zbl
,Cité par Sources :