On a diphasic low Mach number system
ESAIM: Modélisation mathématique et analyse numérique, Tome 39 (2005) no. 3, pp. 487-514.

We propose a Diphasic Low Mach Number (DLMN) system for the modelling of diphasic flows without phase change at low Mach number, system which is an extension of the system proposed by Majda in [Center of Pure and Applied Mathematics, Berkeley, report No. 112] and [Combust. Sci. Tech. 42 (1985) 185-205] for low Mach number combustion problems. This system is written for a priori any equations of state. Under minimal thermodynamic hypothesis which are satisfied by a large class of generalized van der Waals equations of state, we recover some natural properties related to the dilation and to the compression of bubbles. We also propose an entropic numerical scheme in lagrangian coordinates when the geometry is monodimensional and when the two fluids are perfect gases. At last, we numerically show that the DLMN system may become ill-posed when the entropy of one of the two fluids is not a convex function.

DOI : 10.1051/m2an:2005020
Classification : 35Q30, 65M12, 76T10, 80A10
Mots clés : diphasic flow, low mach number system, thermodynamic equilibrium, entropy, van der Waals equations of state
@article{M2AN_2005__39_3_487_0,
     author = {Dellacherie, St\'ephane},
     title = {On a diphasic low {Mach} number system},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {487--514},
     publisher = {EDP-Sciences},
     volume = {39},
     number = {3},
     year = {2005},
     doi = {10.1051/m2an:2005020},
     mrnumber = {2157147},
     zbl = {1075.35038},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an:2005020/}
}
TY  - JOUR
AU  - Dellacherie, Stéphane
TI  - On a diphasic low Mach number system
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2005
SP  - 487
EP  - 514
VL  - 39
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an:2005020/
DO  - 10.1051/m2an:2005020
LA  - en
ID  - M2AN_2005__39_3_487_0
ER  - 
%0 Journal Article
%A Dellacherie, Stéphane
%T On a diphasic low Mach number system
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2005
%P 487-514
%V 39
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an:2005020/
%R 10.1051/m2an:2005020
%G en
%F M2AN_2005__39_3_487_0
Dellacherie, Stéphane. On a diphasic low Mach number system. ESAIM: Modélisation mathématique et analyse numérique, Tome 39 (2005) no. 3, pp. 487-514. doi : 10.1051/m2an:2005020. http://archive.numdam.org/articles/10.1051/m2an:2005020/

[1] R. Abgrall, R. Saurel, A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150 425-467 (1999). | Zbl

[2] G. Allaire, S. Clerc and S. Kokh, A five-equation model for the numerical simulation of interfaces in two-phase flows. C. R. Acad. Sci. Paris Ser. I 331 (2000) 1017-1022. | Zbl

[3] G. Allaire, S. Clerc and S. Kokh, A five-equation model for the simulation of interfaces between compressible fluids. J. Comput. Phys. 181 (2002) 577-616.

[4] Y.-H. Choi, C.L. Merkle, The Application of Preconditioning in Viscous Flows. J. Comput. Phys. 105 (1993) 207-223. | Zbl

[5] A.J. Chorin and J.E. Mardsen, A Mathematical Introduction to Fluid Mechanics. Springer-Verlag (1979). | Zbl

[6] S. Dellacherie, On relaxation schemes for the multicomponent Euler system. ESAIM: M2AN 37 (2003) 909-936. | Numdam | Zbl

[7] S. Dellacherie, Dérivation du système diphasique bas Mach. Simulation numérique en géométrie monodimensionnelle. CEA report, ref. CEA-R-6046 (2004).

[8] S. Dellacherie and A. Vincent, Zero Mach Number Diphasic Equations for the Simulation of Water-Vapor High Pressure Flows2003) 248-255.

[9] P. Embid, Well-posedness of the nonlinear equations for zero Mach number combustion. Comm. Partial Differential Equations 12 (1987) 1227-1283. | Zbl

[10] D. Gueyffier, J. Li, A. Nadim, R. Scardovelli and S. Zaleski, Volume-of-Fluid interface tracking with smoothed surface stress methods for three-dimensional flows. J. Comput. Phys. 152 (1999) 423-456. | Zbl

[11] H. Guillard and A. Murrone, On the behavior of upwind schemes in the low Mach number limit: II. Godunov type schemes. Comput. Fluids 33 (2004) 655-675. | Zbl

[12] H. Guillard and C. Viozat, On the behaviour of upwind schemes in the low Mach number limit. Comput. Fluids 28 (1999) 63-86. | Zbl

[13] F.H. Harlow and J.E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with free interface. Phys. Fluids 8 (1965) 2182-2189.

[14] D. Jamet, O. Lebaigue, N. Coutris and J.M. Delhaye, The second gradient method for the direct numerical simulation of liquid-vapor flows with phase change. J. Comput. Phys. 169 (2001) 624-651. | Zbl

[15] D. Juric and G. Tryggvason, Computations of boiling flows. Int. J. Multiphase Flow 24 (1998) 387-410. | Zbl

[16] S. Kokh, Aspects numériques et théoriques de la modélisation des écoulements diphasiques compressibles par des méthodes de capture d'interface. Ph.D. thesis of Paris VI University (2001).

[17] B. Lafaurie, C. Nardone, R. Scardovelli, S. Zaleski and G. Zanetti, Modelling merging and fragmentation in multiphase flows with SURFER. J. Comput. Phys. 113 (1994) 134-147. | Zbl

[18] F. Lagoutière, Modélisation mathématique et résolution numérique de problèmes de fluides compressibles à plusieurs constituants. Ph.D. thesis of Paris VI University (2000).

[19] D. Lakehal, M. Meier and M. Fulgosi, Interface tracking towards the direct numerical simulation of heat and mass transfer in multiphase flow. Internat. J. Heat Fluid Flow 23 (2002) 242-257.

[20] J.M. Le Corre, E. Hervieu, M. Ishii and J.M. Delhaye, Benchmarking and improvements of measurement techniques for local time-averaged two-phase flow parameters. Fourth International Conference on Multiphase Flows (ICMF 2001), New-Orleans, USA (2001).

[21] A. Majda, Equations for low mach number combustion. Center of Pure and Applied Mathematics, University of California at Berkeley, report No. 112 (1982).

[22] A. Majda and J.A. Sethian, The derivation and numerical solution of the equations for zero Mach number combustion. Combust. Sci. Tech. 42 (1985) 185-205.

[23] W. Mulder, S. Osher and J.A. Sethian, Computing interface motion in compressible gas dynamics. J. Comput. Phys. 100 (1992) 209-228. | Zbl

[24] S. Osher, M. Sussman and P. Smereka, A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114 (1994) 146-159. | Zbl

[25] S. Paolucci, On the filtering of sound from the Navier-Stokes equations. Sandia National Laboratories report SAND82-8257 (1982).

[26] J.A. Sethian, Level Set Methods. Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press (1996). | MR | Zbl

[27] K.M. Shyue, A fluid-mixture type algorithm for compressible multicomponent flow with van der Waals equation of state. J. Comput. Phys. 156 (1999) 43-88. | Zbl

[28] G. Tryggvasson and S.O. Unverdi, A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput. Phys. 100 (1992) 25-37. | Zbl

[29] E. Turkel, Review of preconditioning methods for fluid dynamics. Appl. Numer. Math. 12 (1993) 257-284. | Zbl

[30] S.W.J. Welch and J. Wilson, A volume of fluid based method for fluid flows with phase change. J. Comput. Phys. 160 (2000) 662-682. | Zbl

Cité par Sources :