We discuss the occurrence of oscillations when using central schemes of the Lax-Friedrichs type (LFt), Rusanov's method and the staggered and non-staggered second order Nessyahu-Tadmor (NT) schemes. Although these schemes are monotone or TVD, respectively, oscillations may be introduced at local data extrema. The dependence of oscillatory properties on the numerical viscosity coefficient is investigated rigorously for the LFt schemes, illuminating also the properties of Rusanov's method. It turns out, that schemes with a large viscosity coefficient are prone to oscillations at data extrema. For all LFt schemes except for the classical Lax-Friedrichs method, occurring oscillations are damped in the course of a computation. This damping effect also holds for Rusanov's method. Concerning the NT schemes, the non-staggered version may yield oscillatory results, while it can be shown rigorously that the staggered NT scheme does not produce oscillations when using the classical minmod-limiter under a restriction on the time step size. Note that this restriction is not the same as the condition ensuring the TVD property. Numerical investigations of one-dimensional scalar problems and of the system of shallow water equations in two dimensions with respect to the phenomenon complete the paper.
Mots-clés : conservation laws, numerical methods, finite difference methods, central schemes
@article{M2AN_2005__39_5_965_0, author = {Breuss, Michael}, title = {An analysis of the influence of data extrema on some first and second order central approximations of hyperbolic conservation laws}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {965--993}, publisher = {EDP-Sciences}, volume = {39}, number = {5}, year = {2005}, doi = {10.1051/m2an:2005042}, mrnumber = {2178569}, zbl = {1077.35089}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an:2005042/} }
TY - JOUR AU - Breuss, Michael TI - An analysis of the influence of data extrema on some first and second order central approximations of hyperbolic conservation laws JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2005 SP - 965 EP - 993 VL - 39 IS - 5 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an:2005042/ DO - 10.1051/m2an:2005042 LA - en ID - M2AN_2005__39_5_965_0 ER -
%0 Journal Article %A Breuss, Michael %T An analysis of the influence of data extrema on some first and second order central approximations of hyperbolic conservation laws %J ESAIM: Modélisation mathématique et analyse numérique %D 2005 %P 965-993 %V 39 %N 5 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an:2005042/ %R 10.1051/m2an:2005042 %G en %F M2AN_2005__39_5_965_0
Breuss, Michael. An analysis of the influence of data extrema on some first and second order central approximations of hyperbolic conservation laws. ESAIM: Modélisation mathématique et analyse numérique, Tome 39 (2005) no. 5, pp. 965-993. doi : 10.1051/m2an:2005042. http://archive.numdam.org/articles/10.1051/m2an:2005042/
[1] The correct use of the Lax-Friedrichs method. ESAIM: M2AN 38 (2004) 519-540. | EuDML | Numdam | Zbl
,[2] Partial Differential Equations. American Mathematical Society (1998). | MR | Zbl
,[3] Hyperbolic systems of conservation laws. Edition Marketing (1991). | MR | Zbl
and ,[4] Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer Verlag, New York (1996). | MR | Zbl
and ,[5] On a class of high order resolution total variation stable finite difference schemes. SIAM J. Numer. Anal. 21 (1984) 1-23. | Zbl
,[6] Non-oscillatory central schemes for multidimensional hyperbolic conservation laws. SIAM J. Sci. Comput. 19 (1998) 1892-1917. | Zbl
and ,[7] High-resolution nonoscillatory central schemes with nonstaggered grids for hyperbolic conservation laws. SIAM J. Numer. Anal. 35 (1998) 2147-2168. | Zbl
, , , and ,[8] The relaxation scheme for systems of conservation laws in arbitrary space dimension. Comm. Pure Appl. Math. 45 (1995) 235-276. | Zbl
and ,[9] Weak solutions of nonlinear hyperbolic equations and their numerical approximation. Comm. Pure Appl. Math. 7 (1954) 159-193. | Zbl
,[10] Generalized monotone schemes, discrete paths of extrema, and discrete entropy conditions. Math. Comp. 68 (1999) 1025-1055. | Zbl
and ,[11] Numerical Methods for Conservation Laws. Birkhäuser Verlag, 2nd Edition (1992). | MR | Zbl
,[12] Finite Volume Methods for Hyperbolic Problems. Cambridge University Press (2002). | MR | Zbl
,[13] Compact central WENO schemes for multidimensional conservation laws. SIAM J. Sci. Comput. 22 (2000) 656-672. | Zbl
, and ,[14] Third order nonoscillatory central schemes for hyperbolic conservation laws. Numer. Math. 79 (1998) 397-425. | Zbl
and ,[15] Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87 (1990) 408-436. | Zbl
and ,[16] Numerical viscosity and the entropy condition for conservative difference schemes. Math. Comp. 68 (1984) 1025-1055. | Zbl
,[17] A note on -point conservative monotone schemes. ESAIM: M2AN 38 (2004) 345-358. | Numdam | Zbl
and ,Cité par Sources :