We consider the Stokes problem provided with non standard boundary conditions which involve the normal component of the velocity and the tangential components of the vorticity. We write a variational formulation of this problem with three independent unknowns: the vorticity, the velocity and the pressure. Next we propose a discretization by spectral element methods which relies on this formulation. A detailed numerical analysis leads to optimal error estimates for the three unknowns and numerical experiments confirm the interest of the discretization.
Mots-clés : Stokes problem, vorticity, velocity and pressure formulation, spectral element methods
@article{M2AN_2006__40_5_897_0, author = {Amoura, Karima and Bernardi, Christine and Chorfi, Nejmeddine}, title = {Spectral element discretization of the vorticity, velocity and pressure formulation of the {Stokes} problem}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {897--921}, publisher = {EDP-Sciences}, volume = {40}, number = {5}, year = {2006}, doi = {10.1051/m2an:2006038}, mrnumber = {2293251}, zbl = {1109.76044}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an:2006038/} }
TY - JOUR AU - Amoura, Karima AU - Bernardi, Christine AU - Chorfi, Nejmeddine TI - Spectral element discretization of the vorticity, velocity and pressure formulation of the Stokes problem JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2006 SP - 897 EP - 921 VL - 40 IS - 5 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an:2006038/ DO - 10.1051/m2an:2006038 LA - en ID - M2AN_2006__40_5_897_0 ER -
%0 Journal Article %A Amoura, Karima %A Bernardi, Christine %A Chorfi, Nejmeddine %T Spectral element discretization of the vorticity, velocity and pressure formulation of the Stokes problem %J ESAIM: Modélisation mathématique et analyse numérique %D 2006 %P 897-921 %V 40 %N 5 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an:2006038/ %R 10.1051/m2an:2006038 %G en %F M2AN_2006__40_5_897_0
Amoura, Karima; Bernardi, Christine; Chorfi, Nejmeddine. Spectral element discretization of the vorticity, velocity and pressure formulation of the Stokes problem. ESAIM: Modélisation mathématique et analyse numérique, Tome 40 (2006) no. 5, pp. 897-921. doi : 10.1051/m2an:2006038. http://archive.numdam.org/articles/10.1051/m2an:2006038/
[1] Vorticity-velocity-pressure formulation for Navier-Stokes equations. Comput. Vis. Sci. 6 (2004) 47-52.
, , and ,[2] Vector potentials in three-dimensional nonsmooth domains. Math. Method. Appl. Sci. 21 (1998) 823-864. | Zbl
, , and ,[3] Spectral element discretization of the Maxwell equations. Math. Comput. 68 (1999) 1497-1520. | Zbl
and ,[4] Spectral discretization of the vorticity, velocity and pressure formulation of the Stokes problem. SIAM J. Numer. Anal. 44 (2006) 826-850. bibitemBMx C. Bernardi and Y. Maday, Spectral Methods, in the Handbook of Numerical Analysis V, P.G. Ciarlet and J.-L. Lions Eds., North-Holland (1997) 209-485. | Zbl
and ,[5] Polynomials in the Sobolev world. Internal Report, Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie (2003).
, and ,[6] Incompressible Viscous Fluids and their Finite Element Discretizations, in preparation.
, and ,[7] Stability of finite elements under divergence constraints. SIAM J. Numer. Anal. 20 (1983) 722-731. | Zbl
and ,[8] On traces for functional spaces related to Maxwell's equations. Part II: Hodge decompositions on the boundary of Lipschitz polyhedra and applications. Math. Method. Appl. Sci. 24 (2001) 31-48. | Zbl
and ,[9] Algebraic convergence for anisotropic edge elements in polyhedral domains. Numer. Math. 101 (2005) 29-65. | Zbl
, and ,[10] Espaces fonctionnels Maxwell: Les gentils, les méchants et les singularités, Web publication (1998) http://perso.univ-rennes1.fr/monique.dauge.
and ,[11] Computation of resonance frequencies for Maxwell equations in non smooth domains, in Topics in Computational Wave Propagation, M. Ainsworth, P. Davies, D. Duncan, P. Martin and B. Rynne Eds., Springer (2004) 125-161. | Zbl
and ,[12] Vorticity-velocity-pressure formulation for the Stokes problem. Math. Meth. Appl. Sci. 25 (2002) 1091-1119. | Zbl
,[13] Vorticity-velocity-pressure and stream function-vorticity formulations for the Stokes problem. J. Math. Pure. Appl. 82 (2003) 1395-1451. | Zbl
, and ,[14] Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Springer-Verlag (1986). | MR | Zbl
and ,[15] Mixed finite elements in . Numer. Math. 35 (1980) 315-341. | Zbl
,[16] A mixed finite element method for second order elliptic problems, in Mathematical Aspects of Finite Element Methods, I. Galligani and E. Magenes Eds., Lect. Notes Math. 606, Springer-Verlag (1977) 292-315. | Zbl
and ,[17] Développement numérique de la formulation tourbillon-vitesse-pression pour le problème de Stokes. Ph.D. thesis, Université Pierre et Marie Curie, Paris (1999).
,Cité par Sources :