In this work, we consider singular perturbations of the boundary of a smooth domain. We describe the asymptotic behavior of the solution of a second order elliptic equation posed in the perturbed domain with respect to the size parameter of the deformation. We are also interested in the variations of the energy functional. We propose a numerical method for the approximation of based on a multiscale superposition of the unperturbed solution and a profile defined in a model domain. We conclude with numerical results.
Mots-clés : multiscale asymptotic analysis, shape optimization, patch of elements
@article{M2AN_2007__41_1_111_0, author = {Dambrine, Marc and Vial, Gr\'egory}, title = {A multiscale correction method for local singular perturbations of the boundary}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {111--127}, publisher = {EDP-Sciences}, volume = {41}, number = {1}, year = {2007}, doi = {10.1051/m2an:2007012}, mrnumber = {2323693}, zbl = {1129.65084}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an:2007012/} }
TY - JOUR AU - Dambrine, Marc AU - Vial, Grégory TI - A multiscale correction method for local singular perturbations of the boundary JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2007 SP - 111 EP - 127 VL - 41 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an:2007012/ DO - 10.1051/m2an:2007012 LA - en ID - M2AN_2007__41_1_111_0 ER -
%0 Journal Article %A Dambrine, Marc %A Vial, Grégory %T A multiscale correction method for local singular perturbations of the boundary %J ESAIM: Modélisation mathématique et analyse numérique %D 2007 %P 111-127 %V 41 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an:2007012/ %R 10.1051/m2an:2007012 %G en %F M2AN_2007__41_1_111_0
Dambrine, Marc; Vial, Grégory. A multiscale correction method for local singular perturbations of the boundary. ESAIM: Modélisation mathématique et analyse numérique, Tome 41 (2007) no. 1, pp. 111-127. doi : 10.1051/m2an:2007012. http://archive.numdam.org/articles/10.1051/m2an:2007012/
[1] Shape optimization by the homogenization method, Applied Mathematical Sciences 146. Springer-Verlag, New York (2002). | MR | Zbl
,[2] Modélisation ‘macro' de phénomènes localisés à l'échelle ‘micro' : formulation et implantation numérique. Revue européenne des éléments finis, numéro spécial Giens 2003 13 (2004) 461-473.
and ,[3] Ultimate load computation, effect of surfacic defect and adaptative techniques, in 7th World Congress in Computational Mechanics, Los Angeles (2006).
, , and ,[4] Asymptotic expansion of the solution of an interface problem in a polygonal domain with thin layer. Asymptotic Anal. 50 (2006) 121-173. | Zbl
, , and ,[5] On the influence of a boundary perforation on the dirichlet energy. Control Cybern. 34 (2005) 117-136.
and ,[6] Absorbing boundary conditions for the numerical simulation of waves. Math. Comp. 31 (1977) 629-651. | Zbl
and ,[7] Nonreflecting boundary conditions. J. Comput. Phys. 94 (1991) 1-29. | Zbl
,[8] Matching of Asymptotic Expansions of Solutions of Boundary Value Problems. Translations of Mathematical Monographs 102, Amer. Math. Soc., Providence, R.I. (1992). | Zbl
,[9] Boundary value problems for elliptic equations in domains with conical or angular points. Trans. Moscow Math. Soc. 16 (1967) 227-313. | Zbl
,[10] Computation of singular solutions in elliptic problems and elasticity. Masson, Paris (1987). | MR | Zbl
and ,[11] The localized finite element method and its application to the two-dimensional sea-keeping problem. SIAM J. Numer. Anal. 25 (1988) 729-752. | Zbl
and ,[12] Topological derivative for nucleation of non-circular voids. The Neumann problem, in Differential geometric methods in the control of partial differential equations (Boulder, CO, 1999), Contemp. Math. 268, Amer. Math. Soc., Providence, RI (2000) 341-361. | Zbl
and ,[13] The Topological Asymptotic, in Computational Methods for Control Applications, International Séries GAKUTO (2002). | Zbl
,[14] Asymptotic behavior of energy integrals under small perturbations of the boundary near corner and conic points. Trudy Moskov. Mat. Obshch. 50 (1987) 79-129, 261. | Zbl
and ,[15] Asymptotic theory of elliptic boundary value problems in singularly perturbed domains. Birkhäuser, Berlin (2000).
, and ,[16] Perturbation of the eigenvalues of the Neumann problem due to the variation of the domain boundary. Algebra i Analiz 5 (1993) 169-188. | Zbl
and ,[17] Asymptotic analysis of shape functionals. J. Math. Pures Appl. 82 (2003) 125-196. | Zbl
and ,[18] Matching of asymptotic expansions and multiscale expansion for the rounded corner problem. SAM Research Report, ETH, Zürich (2006).
and ,Cité par Sources :