Low order edge elements are widely used for electromagnetic field problems. Higher order edge approximations are receiving increasing interest but their definition become rather complex. In this paper we propose a simple definition for Whitney edge elements of polynomial degree higher than one. We give a geometrical localization of all degrees of freedom over particular edges and provide a basis for these elements on simplicial meshes. As for Whitney edge elements of degree one, the basis is expressed only in terms of the barycentric coordinates of the simplex.
Mots-clés : Maxwell equations, higher order edge elements, simplicial meshes
@article{M2AN_2007__41_6_1001_0, author = {Rapetti, Francesca}, title = {High order edge elements on simplicial meshes}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {1001--1020}, publisher = {EDP-Sciences}, volume = {41}, number = {6}, year = {2007}, doi = {10.1051/m2an:2007049}, mrnumber = {2377104}, zbl = {1141.78014}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an:2007049/} }
TY - JOUR AU - Rapetti, Francesca TI - High order edge elements on simplicial meshes JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2007 SP - 1001 EP - 1020 VL - 41 IS - 6 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an:2007049/ DO - 10.1051/m2an:2007049 LA - en ID - M2AN_2007__41_6_1001_0 ER -
%0 Journal Article %A Rapetti, Francesca %T High order edge elements on simplicial meshes %J ESAIM: Modélisation mathématique et analyse numérique %D 2007 %P 1001-1020 %V 41 %N 6 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an:2007049/ %R 10.1051/m2an:2007049 %G en %F M2AN_2007__41_6_1001_0
Rapetti, Francesca. High order edge elements on simplicial meshes. ESAIM: Modélisation mathématique et analyse numérique, Tome 41 (2007) no. 6, pp. 1001-1020. doi : 10.1051/m2an:2007049. http://archive.numdam.org/articles/10.1051/m2an:2007049/
[1] Dispersive properties of high order Nédélec/edge element approximation of the time-harmonic Maxwell equations. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 362 (2004) 471-491. | Zbl
,[2] Hierarchic finite element bases on unstructured tetrahedral meshes. Int. J. Numer. Meth. Engng. 58 (2003) 2103-2130. | Zbl
and ,[3] Computation of Maxwell eigenvalues using higher order edge elements in three-dimensions. IEEE Trans. Magn. 39 (2003) 2149-2153.
, , and ,[4] Basic Topology. Springer-Verlag, New York (1983). | MR | Zbl
,[5] Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15 (2006) 1-155.
, and ,[6] Discrete compactness for the version of rectangular edge finite elements. ICES Report 04-29 (2004). | Zbl
, , and ,[7] Computational Electromagnetism. Academic Press, New York (1998). | MR | Zbl
,[8] Generating Whitney forms of polynomial degree one and higher. IEEE Trans. Magn. 38 (2002) 341-344.
,[9] Whitney forms of higher degree. Preprint.
and ,[10] Finite element methods for Navier-Stokes equations. Springer-Verlag, Berlin (1986). | MR | Zbl
and ,[11] Nédélec spaces in affine coordinates. ICES Report 03-48 (2003). | Zbl
, and ,[12] Higher order interpolatory vector bases for computational electromagnetics. IEEE Trans. on Ant. and Propag. 45 (1997) 329-342.
, and ,[13] Canonical construction of finite elements. Math. Comp. 68 (1999) 1325-1346. | Zbl
,[14] High order Whitney forms. Prog. Electr. Res. (PIER) 32 (2001) 271-299.
,[15] Spectral hp element methods for CFD. Oxford Univ. Press, London (1999). | MR | Zbl
and ,[16] On condition numbers in -FEM with Gauss-Lobatto-based shape functions. J. Comput. Appl. Math. 139 (2002) 21-48. | Zbl
,[17] Finite Element Methods for Maxwell's Equations. Oxford University Press (2003). | Zbl
,[18] Mixed finite elements in . Numer. Math. 35 (1980) 315-341. | Zbl
,[19] Geometrical localization of the degrees of freedom for Whitney elements of higher order. IEE Sci. Meas. Technol. 1 (2007) 63-66.
and ,[20] High order Nédélec elements with local complete sequence properties. COMPEL 24 (2005) 374-384. | Zbl
and ,[21] Classical topology and combinatorial group theory, Graduate Text in Mathematics 72. Springer-Verlag (1993). | MR | Zbl
,[22] Hierarchal scalar and vector tetrahedra. IEEE Trans. on Magn. 29 (1993) 1495-1498.
and ,[23] Geometric integration theory. Princeton Univ. Press (1957). | MR | Zbl
,Cité par Sources :