A new finite element, which is continuously differentiable, but only piecewise quadratic polynomials on a type of uniform triangulations, is introduced. We construct a local basis which does not involve nodal values nor derivatives. Different from the traditional finite elements, we have to construct a special, averaging operator which is stable and preserves quadratic polynomials. We show the optimal order of approximation of the finite element in interpolation, and in solving the biharmonic equation. Numerical results are provided confirming the analysis.
Mots-clés : differentiable finite element, quadratic element, biharmonic equation, Strang's conjecture, criss-cross grid, averaging interpolation, non-derivative basis
@article{M2AN_2008__42_2_175_0, author = {Zhang, Shangyou}, title = {A {C1-P2} finite element without nodal basis}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {175--192}, publisher = {EDP-Sciences}, volume = {42}, number = {2}, year = {2008}, doi = {10.1051/m2an:2008002}, mrnumber = {2405144}, zbl = {1145.65102}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an:2008002/} }
TY - JOUR AU - Zhang, Shangyou TI - A C1-P2 finite element without nodal basis JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2008 SP - 175 EP - 192 VL - 42 IS - 2 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an:2008002/ DO - 10.1051/m2an:2008002 LA - en ID - M2AN_2008__42_2_175_0 ER -
%0 Journal Article %A Zhang, Shangyou %T A C1-P2 finite element without nodal basis %J ESAIM: Modélisation mathématique et analyse numérique %D 2008 %P 175-192 %V 42 %N 2 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an:2008002/ %R 10.1051/m2an:2008002 %G en %F M2AN_2008__42_2_175_0
Zhang, Shangyou. A C1-P2 finite element without nodal basis. ESAIM: Modélisation mathématique et analyse numérique, Tome 42 (2008) no. 2, pp. 175-192. doi : 10.1051/m2an:2008002. http://archive.numdam.org/articles/10.1051/m2an:2008002/
[1] Quadratic velocity/linear pressure Stokes elements, in Advances in Computer Methods for Partial Differential Equations VII, R. Vichnevetsky and R.S. Steplemen Eds. (1992).
and ,[2] Homology of smooth splines: generic triangulations and a conjecture of Strang. Trans. AMS 310 (1988) 325-340. | MR | Zbl
,[3] Multigrid methods for the biharmonic problem discretized by conforming C1 finite elements on nonnested meshes. Numer. Functional Anal. Opt. 16 (1995) 835-846. | MR | Zbl
and ,[4] The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York (1994). | MR | Zbl
and ,[5] Mixed and hybrid finite element methods. Springer (1991). | MR | Zbl
and ,[6] The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). | MR | Zbl
,[7] Approximation by finite element functions using local regularization. RAIRO Anal. Numér. R-2 (1975) 77-84. | Numdam | MR | Zbl
,[8] Elliptic Problems in Nonsmooth Domains. Pitman Pub. Inc. (1985). | MR | Zbl
,[9] Dimension of -splines on type-6 tetrahedral partitions. J. Approx. Theory 131 (2004) 157-184. | MR | Zbl
, , , and ,[10] Interpolation and approximation by piecewise quadratic C1-functions of two variables, in Multivariate Approximation Theory, W. Schempp and K. Zeller Eds., Birkhäuser, Basel (1979) 146-161. | MR | Zbl
,[11] Scattered data interpolation and approximation using bivariate C1 piecewise cubic polynomials. Comput. Aided Geom. Design 13 (1996) 81-88. | MR | Zbl
,[12] Bivariate cubic spline space over a nonuniform type-2 triangulation and its subspaces with boundary conditions. Comput. Math. Appl. 49 (2005) 1853-1865. | MR | Zbl
, and ,[13] A nodal basis for piecewise polynomials of degree . Math. Comp. 29 (1975) 736-740. | MR | Zbl
and ,[14] The dimension of the space of piecewise-polynomials. Research Report UH/MD 78, Dept. Math., Univ. Houston, USA (1990).
and ,[15] Developments in bivariate spline interpolation. J. Comput. Appl. Math. 121 (2000) 125-152. | MR | Zbl
and ,[16] Quasi-interpolation by quadratic piecewise polynomials in three variables. Comput. Aided Geom. Design 22 (2005) 221-249. | MR | Zbl
, , and ,[17] Local Lagrange interpolation with bivariate splines of arbitrary smoothness. Constr. Approx. 23 (2006) 33-59. | MR | Zbl
, , and ,[18] Hierarchical conforming finite element methods for the biharmonic equation. SIAM J. Numer. Anal. 29 (1992) 1610-1625. | MR | Zbl
,[19] Piecewise quadratic surface fitting for contour plotting, in Software for Numerical Mathematics, D.J. Evans Ed., Academic Press, New York (1976) 253-2271. | MR
,[20] Piecewise quadratic approximations on triangles. ACM Trans. on Math. Software 3 (1977) 316-325. | MR | Zbl
and ,[21] On the convergence of some low order mixed finite elements for incompressible fluids. Ph.D. thesis, Pennsylvania State University, USA (1994).
[22] Stability and approximability of the P1-P0 element for Stokes equations. Int. J. Numer. Meth. Fluids 54 (2007) 497-515. | MR
and ,[23] Finite element methods for Navier-Stokes equations. Springer (1986). | MR | Zbl
and ,[24] A trivariate box macroelement. Constr. Approx. 21 (2005) 413-431. | MR | Zbl
and ,[25] Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483-493. | MR | Zbl
and ,[26] Optimal quasi-interpolation by quadratic -splines on type-2 triangulations, in Approximation Theory XI: Gatlinburg 2004, C.K. Chui, M. Neamtu and L.L. Schumaker Eds., Nashboro Press, Brentwood, TN (2004) 423-438. | MR | Zbl
and ,[27] Piecewise polynomials and the finite element method. Bull. AMS 79 (1973) 1128-1137. | MR | Zbl
,[28] The dimension of piecewise polynomials, and one-sided approximation, in Conf. on Numerical Solution of Differential Equations, Lecture Notes in Mathematics 363, G.A. Watson Ed., Springer-Verlag, Berlin (1974) 144-152. | MR | Zbl
,[29] Nonconforming tetrahedral finite elements for fourth order elliptic equations. Math. Comp. 76 (2007) 1-18. | MR | Zbl
and ,[30] The Morley element for fourth order elliptic equations in any dimensions. Numer. Math. 103 (2006) 155-169. | MR | Zbl
and ,[31] An optimal order multigrid method for biharmonic C1 finite element equations. Numer. Math. 56 (1989) 613-624. | MR | Zbl
,[32] Personal communication. University of Maryland, USA (1990).
,[33] Multilevel Schwarz methods for the biharmonic Dirichlet problem. SIAM J. Sci. Comput. 15 (1994) 621-644. | MR | Zbl
,Cité par Sources :