Mortar finite element discretization of a model coupling Darcy and Stokes equations
ESAIM: Modélisation mathématique et analyse numérique, Tome 42 (2008) no. 3, pp. 375-410.

As a first draft of a model for a river flowing on a homogeneous porous ground, we consider a system where the Darcy and Stokes equations are coupled via appropriate matching conditions on the interface. We propose a discretization of this problem which combines the mortar method with standard finite elements, in order to handle separately the flow inside and outside the porous medium. We prove a priori and a posteriori error estimates for the resulting discrete problem. Some numerical experiments confirm the interest of the discretization.

DOI : 10.1051/m2an:2008009
Classification : 65N30, 65N55, 76M10
Mots-clés : Mortar method, finite elements, Darcy equations, Stokes equations
Bernardi, Christine  ; Rebollo, Tomás Chacón  ; Hecht, Frédéric  ; Mghazli, Zoubida 1

1 Équipe d’Ingénierie Mathématique, LIRNE, Faculté des Sciences, Université Ibn Tofail, B.P. 133, Kénitra, Morocco.
@article{M2AN_2008__42_3_375_0,
     author = {Bernardi, Christine and Rebollo, Tom\'as Chac\'on and Hecht, Fr\'ed\'eric and Mghazli, Zoubida},
     title = {Mortar finite element discretization of a model coupling {Darcy} and {Stokes} equations},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {375--410},
     publisher = {EDP-Sciences},
     volume = {42},
     number = {3},
     year = {2008},
     doi = {10.1051/m2an:2008009},
     mrnumber = {2423791},
     zbl = {1138.76044},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an:2008009/}
}
TY  - JOUR
AU  - Bernardi, Christine
AU  - Rebollo, Tomás Chacón
AU  - Hecht, Frédéric
AU  - Mghazli, Zoubida
TI  - Mortar finite element discretization of a model coupling Darcy and Stokes equations
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2008
SP  - 375
EP  - 410
VL  - 42
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an:2008009/
DO  - 10.1051/m2an:2008009
LA  - en
ID  - M2AN_2008__42_3_375_0
ER  - 
%0 Journal Article
%A Bernardi, Christine
%A Rebollo, Tomás Chacón
%A Hecht, Frédéric
%A Mghazli, Zoubida
%T Mortar finite element discretization of a model coupling Darcy and Stokes equations
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2008
%P 375-410
%V 42
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an:2008009/
%R 10.1051/m2an:2008009
%G en
%F M2AN_2008__42_3_375_0
Bernardi, Christine; Rebollo, Tomás Chacón; Hecht, Frédéric; Mghazli, Zoubida. Mortar finite element discretization of a model coupling Darcy and Stokes equations. ESAIM: Modélisation mathématique et analyse numérique, Tome 42 (2008) no. 3, pp. 375-410. doi : 10.1051/m2an:2008009. http://archive.numdam.org/articles/10.1051/m2an:2008009/

[1] Y. Achdou and C. Bernardi, Un schéma de volumes ou éléments finis adaptatif pour les équations de Darcy à perméabilité variable. C. R. Acad. Sci. Paris Sér. I 333 (2001) 693-698. | MR | Zbl

[2] Y. Achdou, C. Bernardi and F. Coquel, A priori and a posteriori analysis of finite volume discretizations of Darcy's equations. Numer. Math. 96 (2003) 17-42. | MR | Zbl

[3] R.A. Adams, Sobolev Spaces. Academic Press (1975). | MR | Zbl

[4] S. Antontsev, A.V. Kazhikhov and V.N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids [English transl.], Studies in Mathematics and its Applications 22. North-Holland (1990). | MR | Zbl

[5] F. Ben Belgacem, The Mortar finite element method with Lagrangian multiplier. Numer. Math. 84 (1999) 173-197. | MR | Zbl

[6] C. Bernardi and G. Raugel, Analysis of some finite elements for the Stokes problem. Math. Comput. 44 (1985) 71-79. | MR | Zbl

[7] C. Bernardi, Y. Maday and A.T. Patera, A new nonconforming approach to domain decomposition: the mortar element method, in Collège de France Seminar XI, H. Brezis and J.-L. Lions Eds., Pitman (1994) 13-51. | MR | Zbl

[8] C. Bernardi, B. Métivet and R. Verfürth, Analyse numérique d'indicateurs d'erreur, in Maillage et adaptation, Chap. 8, P.-L. George Ed., Hermès (2001) 251-278.

[9] C. Bernardi, Y. Maday and F. Rapetti, Discrétisations variationnelles de problèmes aux limites elliptiques, Collection Mathématiques et Applications 45. Springer-Verlag (2004). | MR | Zbl

[10] C. Bernardi, F. Hecht and O. Pironneau, Coupling Darcy and Stokes equations for porous media with cracks. ESAIM: M2AN 39 (2005) 7-35. | Numdam | MR | Zbl

[11] C. Bernardi, Y. Maday and F. Rapetti, Basics and some applications of the mortar element method. GAMM - Gesellschaft für Angewandte Mathematik und Mechanik 28 (2005) 97-123. | MR

[12] C. Bernardi, F. Hecht and Z. Mghazli, Mortar finite element discretization for the flow in a non homogeneous porous medium. Comput. Methods Appl. Mech. Engrg. 196 (2007) 1554-1573. | MR

[13] J. Boland and R. Nicolaides, Stability of finite elements under divergence constraints. SIAM J. Numer. Anal. 20 (1983) 722-731. | MR | Zbl

[14] D. Braess and R. Verfürth, A posteriori error estimators for the Raviart-Thomas element. SIAM J. Numer. Anal. 33 (1996) 2431-2444. | MR | Zbl

[15] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics 15. Springer-Verlag (1991). | MR | Zbl

[16] E. Burman and P. Hansbo, A unified stabilized method for Stokes' and Darcy's equations. J. Comput. Applied Math. 198 (2007) 35-51. | MR | Zbl

[17] D.-G. Calugaru, Modélisation et simulation numérique du transport de radon dans un milieu poreux fissuré ou fracturé. Problème direct et problèmes inverses comme outils d'aide à la prédiction sismique. Ph.D. thesis, Université de Franche-Comté, Besançon, France (2002).

[18] C. Carstensen and J. Hu, A unifying theory of a posteriori error control for nonconforming finite element methods. Numer. Math. 107 (2007) 473-502. | MR | Zbl

[19] M. Dauge, Neumann and mixed problems on curvilinear polyhedra. Integr. Equat. Oper. Th. 15 (1992) 227-261. | MR | Zbl

[20] G. De Marsily, Quantitative Hydrology. Groundwater Hydrology for Engineers. Academic Press, New York (1986).

[21] M. Discacciati, E. Miglio and A. Quarteroni, Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43 (2002) 57-74. | MR | Zbl

[22] M. Fortin, Old and new elements for incompressible flows. Internat. J. Numer. Methods Fluids 1 (1981) 347-364. | MR | Zbl

[23] J. Galvis and M. Sarkis, Non-matching mortar discretization analysis for the coupling Stokes-Darcy equations. (Submitted).

[24] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms, Springer Series in Computational Mathematics 5. Springer-Verlag (1986). | MR | Zbl

[25] V. Girault, R. Glowinski and H. López, A domain decomposition and mixed method for a linear parabolic boundary value problem. IMA J. Numer. Anal. 24 (2004) 491-520. | MR | Zbl

[26] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman (1985). | MR | Zbl

[27] F. Hecht and O. Pironneau, FreeFem++, see www.freefem.org.

[28] W.J. Layton, F. Schieweck and I. Yotov, Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40 (2002) 2195-2218. | MR | Zbl

[29] R. Lewandowski, Analyse mathématique et océanographie, Collection Recherches en Mathématiques Appliquées. Masson (1997).

[30] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Vol. 1. Dunod (1968). | MR | Zbl

[31] J.-C. Nédélec, Mixed finite elements in 3 . Numer. Math. 35 (1980) 315-341. | MR | Zbl

[32] M. Orlt and A.-M. Sändig, Regularity of viscous Navier-Stokes flows in nonsmooth domains, in Proc. Conf. Boundary Value Problems and Integral Equations in Nonsmooth Domains, M. Costabel, M. Dauge and S. Nicaise Eds., Lect. Notes Pure Appl. Math. 167, Dekker (1995) 185-201. | MR | Zbl

[33] K.R. Rajagopal, On a hierarchy of approximate models for flows of incompressible fluids through porous solids. Math. Models Methods Appl. Sci. 17 (2007) 215-252. | MR | Zbl

[34] P.-A. Raviart and J.-M. Thomas, A mixed finite element method for second order elliptic problems, in Mathematical Aspects of Finite Element Methods, Lect. Notes Math. 606, Springer (1977) 292-315. | MR | Zbl

[35] J.M. Urquiza, D. N'Dri, A. Garon and M.C. Delfour, Coupling Stokes and Darcy equations. Applied Numer. Math. (2007) (in press). | MR | Zbl

[36] R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley & Teubner (1996). | Zbl

Cité par Sources :