We propose and analyze numerical schemes for viscosity solutions of time-dependent Hamilton-Jacobi equations on the Heisenberg group. The main idea is to construct a grid compatible with the noncommutative group geometry. Under suitable assumptions on the data, the hamiltonian and the parameters for the discrete first order scheme, we prove that the error between the viscosity solution computed at the grid nodes and the solution of the discrete problem behaves like where is the mesh step. Such an estimate is similar to those available in the euclidean geometrical setting. The theoretical results are tested numerically on some examples for which semi-analytical formulas for the computation of geodesics are known. Other simulations are presented, for both steady and unsteady problems.
Mots-clés : degenerate Hamilton-Jacobi equation, Heisenberg group, finite difference schemes, error estimates
@article{M2AN_2008__42_4_565_0, author = {Achdou, Yves and Capuzzo-Dolcetta, Italo}, title = {Approximation of solutions of {Hamilton-Jacobi} equations on the {Heisenberg} group}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {565--591}, publisher = {EDP-Sciences}, volume = {42}, number = {4}, year = {2008}, doi = {10.1051/m2an:2008017}, mrnumber = {2437774}, zbl = {1153.65083}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an:2008017/} }
TY - JOUR AU - Achdou, Yves AU - Capuzzo-Dolcetta, Italo TI - Approximation of solutions of Hamilton-Jacobi equations on the Heisenberg group JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2008 SP - 565 EP - 591 VL - 42 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an:2008017/ DO - 10.1051/m2an:2008017 LA - en ID - M2AN_2008__42_4_565_0 ER -
%0 Journal Article %A Achdou, Yves %A Capuzzo-Dolcetta, Italo %T Approximation of solutions of Hamilton-Jacobi equations on the Heisenberg group %J ESAIM: Modélisation mathématique et analyse numérique %D 2008 %P 565-591 %V 42 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an:2008017/ %R 10.1051/m2an:2008017 %G en %F M2AN_2008__42_4_565_0
Achdou, Yves; Capuzzo-Dolcetta, Italo. Approximation of solutions of Hamilton-Jacobi equations on the Heisenberg group. ESAIM: Modélisation mathématique et analyse numérique, Tome 42 (2008) no. 4, pp. 565-591. doi : 10.1051/m2an:2008017. http://archive.numdam.org/articles/10.1051/m2an:2008017/
[1] A finite difference scheme on a non commutative group. Numer. Math. 89 (2001) 401-424. | MR | Zbl
and ,[2] A boundary value problem for the minimum-time function. SIAM J. Control Optim. 27 (1989) 776-785. | MR | Zbl
,[3] Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Systems & Control: Foundations & Applications. Birkhäuser Boston Inc., Boston, MA (1997). With appendices by M. Falcone and P. Soravia. | MR | Zbl
and ,[4] Error bounds for monotone approximation schemes for Hamilton-Jacobi-Bellman equations. SIAM J. Numer. Anal. 43 (2005) 540-558 (electronic). | MR | Zbl
and ,[5] Hamilton-Jacobi theory and the heat kernel on Heisenberg groups. J. Math. Pures Appl. 79 (2000) 633-689. | MR | Zbl
, and ,[6] MR
and , Eds., Sub-Riemannian Geometry, Progress in Mathematics 144. Birkhäuser Verlag, Basel (1996). |[7] Homogenization of Hamilton-Jacobi equations in the Heisenberg group. Commun. Pure Appl. Anal. 2 (2003) 461-479. | MR | Zbl
and ,[8] Control theory and singular Riemannian geometry, in New directions in applied mathematics (Cleveland, Ohio, 1980), Springer, New York (1982) 11-27. | MR | Zbl
,[9] On a discrete approximation of the Hamilton-Jacobi equation of dynamic programming. Appl. Math. Optim. 10 (1983) 367-377. | MR | Zbl
,[10] The Hopf-Lax solution for state dependent Hamilton-Jacobi equations (Viscosity solutions of differential equations and related topics) (Japanese). Sūrikaisekikenkyūsho Kōkyūroku 1287 (2002) 143-154. | MR
,[11] The Hopf solution of Hamilton-Jacobi equations, in Elliptic and parabolic problems (Rolduc/Gaeta, 2001), World Sci. Publishing, River Edge, NJ (2002) 343-351. | MR | Zbl
,[12] A generalized Hopf-Lax formula: analytical and approximations aspects, in Geometric Control and Nonsmooth Analysis, F. Ancona, A. Bressan, P. Cannarsa, F. Clarkeă and P.R. Wolenski Eds., Series on Advances in Mathematics for Applied Sciences 76, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2008). | MR
,[13] Approximate solutions of the Bellman equation of deterministic control theory. Appl. Math. Optim. 11 (1984) 161-181. | MR | Zbl
and ,[14] Two approximations of solutions of Hamilton-Jacobi equations. Math. Comp. 43 (1984) 1-19. | MR | Zbl
and ,[15] Comparison and existence results for evolutive non-coercive first-order Hamilton-Jacobi equations. ESAIM: COCV 13 (2007) 484-502. | Numdam | MR | Zbl
and ,[16] One-sided difference approximations for nonlinear conservation laws. Math. Comp. 36 (1981) 321-351. | MR | Zbl
and ,[17] A numerical approach to the infinite horizon problem of deterministic control theory. Appl. Math. Optim. 15 (1987) 1-13. | MR | Zbl
,[18] Discrete time high-order schemes for viscosity solutions of Hamilton-Jacobi-Bellman equations. Numer. Math. 67 (1994) 315-344. | MR | Zbl
and ,[19] Strong stability-preserving high-order time discretization methods. SIAM Rev. 43 (2001) 89-112 (electronic). | MR | Zbl
, and ,[20] Uniformly high-order accurate essentially nonoscillatory schemes. III. J. Comput. Phys. 71 (1987) 231-303. | MR | Zbl
, , and ,[21] Quasiconformal mappings on the Heisenberg group. Invent. Math. 80 (1985) 309-338. | MR | Zbl
and ,[22] On the rate of convergence of finite-difference approximations for Bellman's equations with variable coefficients. Probab. Theory Relat. Fields 117 (2000) 1-16. | MR | Zbl
,[23] The rate of convergence of finite-difference approximations for Bellman equations with Lipschitz coefficients. Appl. Math. Optim. 52 (2005) 365-399. | MR | Zbl
,[24] A version of the Hopf-Lax formula in the Heisenberg group. Comm. Partial Diff. Eq. 27 (2002) 1139-1159. | MR | Zbl
and ,[25] Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79 (1988) 12-49. | MR | Zbl
and ,[26] High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal. 28 (1991) 907-922. | MR | Zbl
and ,[27] Level set methods and fast marching methods, Evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, Cambridge Monographs on Applied and Computational Mathematics 3. Cambridge University Press, Cambridge, 2nd edition (1999). | MR | Zbl
,Cité par Sources :