We consider a system of degenerate parabolic equations modelling a thin film, consisting of two layers of immiscible newtonian liquids, on a solid horizontal substrate. In addition, the model includes the presence of insoluble surfactants on both the free liquid-liquid and liquid-air interfaces, and the presence of both attractive and repulsive van der Waals forces in terms of the heights of the two layers. We show that this system formally satisfies a Lyapunov structure, and a second energy inequality controlling the laplacian of the liquid heights. We introduce a fully practical finite element approximation of this nonlinear degenerate parabolic system, that satisfies discrete analogues of these energy inequalities. Finally, we prove convergence of this approximation, and hence existence of a solution to this nonlinear degenerate parabolic system.
Mots-clés : thin film, surfactant, bilayer, fourth order degenerate parabolic system, finite elements, convergence analysis
@article{M2AN_2008__42_5_749_0, author = {Barrett, John W. and El Alaoui, Linda}, title = {Finite element approximation of a two-layered liquid film in the presence of insoluble surfactants}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {749--775}, publisher = {EDP-Sciences}, volume = {42}, number = {5}, year = {2008}, doi = {10.1051/m2an:2008028}, mrnumber = {2454622}, zbl = {1147.76038}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an:2008028/} }
TY - JOUR AU - Barrett, John W. AU - El Alaoui, Linda TI - Finite element approximation of a two-layered liquid film in the presence of insoluble surfactants JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2008 SP - 749 EP - 775 VL - 42 IS - 5 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an:2008028/ DO - 10.1051/m2an:2008028 LA - en ID - M2AN_2008__42_5_749_0 ER -
%0 Journal Article %A Barrett, John W. %A El Alaoui, Linda %T Finite element approximation of a two-layered liquid film in the presence of insoluble surfactants %J ESAIM: Modélisation mathématique et analyse numérique %D 2008 %P 749-775 %V 42 %N 5 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an:2008028/ %R 10.1051/m2an:2008028 %G en %F M2AN_2008__42_5_749_0
Barrett, John W.; El Alaoui, Linda. Finite element approximation of a two-layered liquid film in the presence of insoluble surfactants. ESAIM: Modélisation mathématique et analyse numérique, Tome 42 (2008) no. 5, pp. 749-775. doi : 10.1051/m2an:2008028. http://archive.numdam.org/articles/10.1051/m2an:2008028/
[1] Convergence of a finite-element approximation of surfactant spreading on a thin film in the presence of van der Waals forces. IMA J. Numer. Anal. 24 (2004) 323-363. | MR | Zbl
and ,[2] Finite element approximation of surfactant spreading on a thin film. SIAM J. Numer. Anal. 41 (2003) 1427-1464. | MR | Zbl
, and ,[3] Finite element approximation of soluble surfactant spreading on a thin film. SIAM J. Numer. Anal. 44 (2006) 1218-1247. | MR
, and ,[4] Stability of evaporating two-layered liquid film in the presence of surfactant - ii Linear analysis. Chem. Eng. Sci. 53 (1998) 2823-2837.
, , , , and ,[5] Surfactant spreading on thin viscous films: nonnegative solutions of a coupled degenerate system. SIAM J. Math. Anal. 37 (2006) 2025-2048. | MR | Zbl
and ,[6] On the convergence of entropy consistent schemes for lubrication type equations in multiple space dimensions. Math. Comp. 72 (2003) 1251-1279. | MR | Zbl
,[7] Nonnegativity preserving numerical schemes for the thin film equation. Numer. Math. 87 (2000) 113-152. | MR | Zbl
and ,[8] A singularly perturbed problem related to surfactant spreading on thin films. Nonlinear Anal. 27 (1996) 287-296. | MR | Zbl
,[9] An Introduction to Partial Differential Equations. Springer-Verlag, New York, 1992. | MR | Zbl
and ,[10] ALBERT-software for scientific computations and applications. Acta Math. Univ. Comenian. (N.S.) 70 (2000) 105-122. | MR | Zbl
and ,[11] Thin liquid films. Adv. Colloid Interface Sci. 1 (1967) 391-464.
,[12] Positivity preserving numerical schemes for lubrication-type equations. SIAM J. Numer. Anal. 37 (2000) 523-555. | MR | Zbl
and ,Cité par Sources :