It is well known that the classical local projection method as well as residual-based stabilization techniques, as for instance streamline upwind Petrov-Galerkin (SUPG), are optimal on isotropic meshes. Here we extend the local projection stabilization for the Navier-Stokes system to anisotropic quadrilateral meshes in two spatial dimensions. We describe the new method and prove an a priori error estimate. This method leads on anisotropic meshes to qualitatively better convergence behavior than other isotropic stabilization methods. The capability of the method is illustrated by means of two numerical test problems.
Mots-clés : incompressible flow, Navier-Stokes equations, stabilized finite elements, anisotropic meshes
@article{M2AN_2008__42_6_903_0, author = {Braack, Malte}, title = {A stabilized finite element scheme for the {Navier-Stokes} equations on quadrilateral anisotropic meshes}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {903--924}, publisher = {EDP-Sciences}, volume = {42}, number = {6}, year = {2008}, doi = {10.1051/m2an:2008032}, mrnumber = {2473313}, zbl = {1149.76026}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an:2008032/} }
TY - JOUR AU - Braack, Malte TI - A stabilized finite element scheme for the Navier-Stokes equations on quadrilateral anisotropic meshes JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2008 SP - 903 EP - 924 VL - 42 IS - 6 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an:2008032/ DO - 10.1051/m2an:2008032 LA - en ID - M2AN_2008__42_6_903_0 ER -
%0 Journal Article %A Braack, Malte %T A stabilized finite element scheme for the Navier-Stokes equations on quadrilateral anisotropic meshes %J ESAIM: Modélisation mathématique et analyse numérique %D 2008 %P 903-924 %V 42 %N 6 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an:2008032/ %R 10.1051/m2an:2008032 %G en %F M2AN_2008__42_6_903_0
Braack, Malte. A stabilized finite element scheme for the Navier-Stokes equations on quadrilateral anisotropic meshes. ESAIM: Modélisation mathématique et analyse numérique, Tome 42 (2008) no. 6, pp. 903-924. doi : 10.1051/m2an:2008032. http://archive.numdam.org/articles/10.1051/m2an:2008032/
[1] Anisotropic finite elements: Local estimates and applications, Advances in Numerical Mathematics. Teubner, Stuttgart (1999). | MR | Zbl
,[2] An adaptive finite element method for the incompressible Navier-Stokes equation on time-dependent domains. Ph.D. Dissertation, SFB-359 Preprint 95-44, Universität Heidelberg, Germany (1995). | Zbl
,[3] A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38 (2001) 173-199. | MR | Zbl
and ,[4] A two-level stabilization scheme for the Navier-Stokes equations, in Numerical Mathematics and Advanced Applications, ENUMATH 2003, E.A.M. Feistauer Ed., Springer (2004) 123-130. | MR
and ,[5] Numerical parameter estimaton for chemical models in multidimensional reactive flows. Combust. Theory Model. 8 (2004) 661-682. | MR | Zbl
, and ,[6] Parameter identification for chemical models in combustion problems. Appl. Numer. Math. 54 (2005) 519-536. | MR | Zbl
, and ,[7] Anisotropic -stable projections on quadrilateral meshes, in Numerical Mathematics and Advanced Applications, Enumath Proc. 2005, B. de Castro Ed., Springer (2006) 495-503. | MR | Zbl
,[8] Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method. SIAM J. Numer. Anal. 43 (2006) 2544-2566. | MR | Zbl
and ,[9] Local projection stabilization for the Stokes system on anisotropic quadrilateral meshes, in Numerical Mathematics and Advanced Applications, Enumath Proc. 2005, B. de Castro Ed., Springer (2006) 770-778. | MR
and ,[10] Solutions of 3D Navier-Stokes benchmark problems with adaptive finite elements. Comput. Fluids 35 (2006) 372-392. | Zbl
and ,[11] Stabilized finite elements for 3D reactive flow. Int. J. Numer. Methods Fluids 51 (2006) 981-999. | MR | Zbl
and ,[12] Stabilized finite element methods for the generalized Oseen problem. Comput. Methods Appl. Mech. Engrg. 196 (2007) 853-866. | MR | Zbl
, , and ,[13] Streamline upwind Petrov-Galerkin formulation for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 32 (1982) 199-259. | MR | Zbl
and ,[14] Edge stabilization for the incompressible Navier-Stokes equations: a continuous interior penalty finite element method. SIAM J. Numer. Anal. 44 (2006) 1248-1274. | MR
, and ,[15] Finite Element Methods for Elliptic Problems. North-Holland, Amsterdam (1978). | Zbl
,[16] Stabilization of incompressibility and convection through orthogonal subscales in finite element methods. Comput. Methods Appl. Mech. Engrg. 190 (2000) 1579-1599. | MR | Zbl
,[17] Approximation of the incompressible Navier-Stokes equations using orthogonal subscale stabilization and pressure segregation on anisotropic finite element meshes. Comput. Methods Appl. Mech. Engrg. 193 (2004) 1403-1419. | MR | Zbl
and ,[18] Anisotropic error estimates for elliptic problems. Numer. Math. 94 (2003) 67-92. | MR | Zbl
and ,[19] Anisotropic mesh adaptation in computational fluid dynamics: Application to the advection-diffusion-reaction and the Stokes problems. Appl. Numer. Math. 51 (2004) 511-533. | MR | Zbl
, and ,[20] Stabilized finite element methods: II. The incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 99 (1992) 209-233. | MR | Zbl
and ,[21] Stabilization of Galerkin approximations of transport equations by subgrid modeling. ESAIM: M2AN 33 (1999) 1293-1316. | Numdam | MR | Zbl
,[22] A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 84 (1990) 175-192. | MR | Zbl
and ,[23] A new finite element formulation for computational fluid dynamics: V. Circumvent the Babuska-Brezzi condition: A stable Petrov-Galerkin formulation for the Stokes problem accommodating equal order interpolation. Comput. Methods Appl. Mech. Engrg. 59 (1986) 89-99. | MR | Zbl
, and ,[24] A finite element variational multiscale method for the Navier-Stokes equations. SIAM J. Sci. Comp. 26 (2005) 1485-1503. | MR | Zbl
and ,[25] A two-level variational multiscale method for convection-dominated convection-diffusion equations. Comput. Methods Appl. Mech. Engrg. 26 (2005) 4594-4603. | MR | Zbl
, and ,[26] Optimal vortex reduction for instationary flows based on translation invariant cost functionals. SIAM J. Contr. Opt. 46 (2007) 1368-1397. | MR | Zbl
and ,[27] Anisotropic meshes and streamline-diffusion stabilization for convection-diffusion problems. Comm. Numer. Methods Engrg. 21 (2005) 515-525. | MR | Zbl
,[28] Anisotropic mesh refinement in stabilized Galerkin methods. Numer. Math. 74 (1996) 261-282. | MR | Zbl
and ,[29] Residual-based stabilized higher-order FEM for a generalized Oseen problem. Math. Models Methods Appl. Sci. 16 (2006) 949-966. | MR | Zbl
and ,[30] Stabilized FEM with anisotropic mesh refinement for the Oseen problem, in Proceedings ENUMATH 2005, Springer (2006) 799-806. | MR | Zbl
, and ,[31] A unified convergence analysis for local projection stabilisations applied ro the Oseen problem. ESAIM: M2AN 41 (2007) 713-742. | Numdam | MR
, and ,[32] Stabilized finite elements on anisotropic meshes: A priori estimate for the advection-diffusion and the Stokes problem. SIAM J. Numer. Anal. 41 (2003) 1131-1162. | MR | Zbl
, and ,[33] Modelling of natural convection flows with large temperature differences: a benchmark problem for low Mach number solvers. Part 2. Contributions to the June 2004 conference. ESAIM: M2AN 39 (2005) 617-621. | Numdam | MR | Zbl
, , , , , , , , , , , , and ,[34] A modified streamline diffusion method for solving the stationary Navier-Stokes equations. Numer. Math. 59 (1991) 13-29. | MR | Zbl
and ,Cité par Sources :