The main objective of this paper is to prove new necessary conditions to the existence of KAM tori. To do so, we develop a set of explicit a-priori estimates for smooth solutions of Hamilton-Jacobi equations, using a combination of methods from viscosity solutions, KAM and Aubry-Mather theories. These estimates are valid in any space dimension, and can be checked numerically to detect gaps between KAM tori and Aubry-Mather sets. We apply these results to detect non-integrable regions in several examples such as a forced pendulum, two coupled penduli, and the double pendulum.
Mots-clés : Aubry-Mather theory, Hamilton-Jacobi integrability, viscosity solutions
@article{M2AN_2008__42_6_1047_0, author = {Gomes, Diogo A. and Oberman, Adam}, title = {Viscosity solutions methods for converse {KAM} theory}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {1047--1064}, publisher = {EDP-Sciences}, volume = {42}, number = {6}, year = {2008}, doi = {10.1051/m2an:2008035}, mrnumber = {2473319}, zbl = {1156.37015}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an:2008035/} }
TY - JOUR AU - Gomes, Diogo A. AU - Oberman, Adam TI - Viscosity solutions methods for converse KAM theory JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2008 SP - 1047 EP - 1064 VL - 42 IS - 6 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an:2008035/ DO - 10.1051/m2an:2008035 LA - en ID - M2AN_2008__42_6_1047_0 ER -
%0 Journal Article %A Gomes, Diogo A. %A Oberman, Adam %T Viscosity solutions methods for converse KAM theory %J ESAIM: Modélisation mathématique et analyse numérique %D 2008 %P 1047-1064 %V 42 %N 6 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an:2008035/ %R 10.1051/m2an:2008035 %G en %F M2AN_2008__42_6_1047_0
Gomes, Diogo A.; Oberman, Adam. Viscosity solutions methods for converse KAM theory. ESAIM: Modélisation mathématique et analyse numérique, Tome 42 (2008) no. 6, pp. 1047-1064. doi : 10.1051/m2an:2008035. http://archive.numdam.org/articles/10.1051/m2an:2008035/
[1] Mathematical aspects of classical and celestial mechanics. Springer-Verlag, Berlin (1997). Translated from the 1985 Russian original by A. Iacob, reprint of the original English edition from the series Encyclopaedia of Mathematical Sciences [Dynamical systems III, Encyclopaedia Math. Sci. 3, Springer, Berlin (1993) MR 95d:58043a]. | MR | Zbl
, and ,[2] Mather theory and periodic solutions of the forced Burgers equation. Comm. Pure Appl. Math. 52 (1999) 811-828. | MR | Zbl
,[3] Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Birkhäuser Boston Inc., Boston, MA, USA (1997). | MR | Zbl
and ,[4] An analytic counterexample to the KAM theorem. Ergod. Theory Dyn. Syst. 20 (2000) 317-333. | MR | Zbl
,[5] An introduction to the Aubry-Mather theory. São Paulo Journal of Mathematical Sciences (to appear).
and ,[6] Lagrangian graphs, minimizing measures and Mañé's critical values. Geom. Funct. Anal. 8 (1998) 788-809. | MR | Zbl
, , and ,[7] Partial differential equations. American Mathematical Society, Providence, RI, USA (1998). | MR | Zbl
,[8] Effective Hamiltonians and averaging for Hamiltonian dynamics. I. Arch. Ration. Mech. Anal. 157 (2001) 1-33. | MR | Zbl
and ,[9] Effective Hamiltonians and averaging for Hamiltonian dynamics. II. Arch. Ration. Mech. Anal. 161 (2002) 271-305. | MR | Zbl
and ,[10] Solutions KAM faibles conjuguées et barrières de Peierls. C. R. Acad. Sci. Paris Sér. I Math. 325 (1997) 649-652. | MR | Zbl
,[11] Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens. C. R. Acad. Sci. Paris Sér. I Math. 324 (1997) 1043-1046. | MR | Zbl
,[12] Orbite hétéroclines et ensemble de Peierls. C. R. Acad. Sci. Paris Sér. I Math. 326 (1998) 1213-1216. | MR | Zbl
,[13] Sur la convergence du semi-groupe de Lax-Oleinik. C. R. Acad. Sci. Paris Sér. I Math. 327 (1998) 267-270. | MR | Zbl
,[14] Existence of critical subsolutions of the Hamilton-Jacobi equation. Invent. Math. 155 (2004) 363-388. | MR | Zbl
and ,[15] Controlled Markov processes and viscosity solutions. Springer-Verlag, New York (1993). | MR | Zbl
and ,[16] Analytic destruction of invariant circles. Ergod. Theory Dyn. Syst. 14 (1994) 267-298. | MR | Zbl
,[17] Construction of invariant measures supported within the gaps of Aubry-Mather sets. Ergod. Theory Dyn. Syst. 16 (1996) 51-86. | MR | Zbl
,[18] Classical mechanics. Addison-Wesley Publishing Co., Reading, Mass., second edition (1980). | MR | Zbl
,[19] Viscosity solutions of Hamilton-Jacobi equations and asymptotics for Hamiltonian systems. Calc. Var. Partial Differential Equations 14 (2002) 345-357. | MR | Zbl
,[20] Perturbation theory for viscosity solutions of Hamilton-Jacobi equations and stability of Aubry-Mather sets. SIAM J. Math. Anal. 35 (2003) 135-147 (electronic). | MR | Zbl
,[21] Duality principles for fully nonlinear elliptic equations, in Trends in partial differential equations of mathematical physics, Progr. Nonlinear Differential Equations Appl. 61, Birkhäuser, Basel (2005) 125-136. | MR
,[22] Computing the effective Hamiltonian using a variational approach. SIAM J. Contr. Opt. 43 (2004) 792-812 (electronic). | MR | Zbl
and ,[23] Lack of integrability via viscosity solution methods. Indiana Univ. Math. J. 53 (2004) 1055-1071. | MR | Zbl
and ,[24] Converse KAM theory for monotone positive symplectomorphisms. Nonlinearity 12 (1999) 1299-1322. | MR | Zbl
,[25] Closed orbits and converse KAM theory. Nonlinearity 3 (1990) 961-973. | MR | Zbl
,[26] Correctors for the homogenization of Hamilton-Jacobi equations in the stationary ergodic setting. Comm. Pure Math. Appl. 56 (2003) 1501-1524. | MR | Zbl
and ,[27] Homogeneization of Hamilton-Jacobi equations. Preliminary version (1988).
, and ,[28] Converse KAM theory, in Singular behavior and nonlinear dynamics, Vol. 1 (Sámos, 1988), World Sci. Publishing, Teaneck, USA (1989) 109-113. | MR
,[29] Converse KAM: theory and practice. Comm. Math. Phys. 98 (1985) 469-512. | MR | Zbl
and ,[30] Converse KAM theory for symplectic twist maps. Nonlinearity 2 (1989) 555-570. | MR | Zbl
, and ,[31] On the minimizing measures of Lagrangian dynamical systems. Nonlinearity 5 (1992) 623-638. | MR | Zbl
,[32] Generic properties and problems of minimizing measures of Lagrangian systems. Nonlinearity 9 (1996) 273-310. | MR | Zbl
,[33] Minimal action measures for positive-definite Lagrangian systems, in IXth International Congress on Mathematical Physics (Swansea, 1988), Hilger, Bristol (1989) 466-468. | MR | Zbl
,[34] Minimal measures. Comment. Math. Helv. 64 (1989) 375-394. | MR | Zbl
,[35] Action minimizing invariant measures for positive definite Lagrangian systems. Math. Z. 207 (1991) 169-207. | MR | Zbl
,[36] Two approximations for effective hamiltonians arising from homogenization of Hamilton-Jacobi equations. Preprint (2003). | MR
,Cité par Sources :