In this work, we consider dynamic frictionless contact with adhesion between a viscoelastic body of the Kelvin-Voigt type and a stationary rigid obstacle, based on the Signorini's contact conditions. Including the adhesion processes modeled by the bonding field, a new version of energy function is defined. We use the energy function to derive a new form of energy balance which is supported by numerical results. Employing the time-discretization, we establish a numerical formulation and investigate the convergence of numerical trajectories. The fully discrete approximation which satisfies the complementarity conditions is computed by using the nonsmooth Newton's method with the Kanzow-Kleinmichel function. Numerical simulations of a viscoelastic beam clamped at two ends are presented.
Mots-clés : adhesion, Signorini's contact, complementarity conditions, time-discretization
@article{M2AN_2008__42_6_1021_0, author = {Ahn, Jeongho}, title = {Thick obstacle problems with dynamic adhesive contact}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {1021--1045}, publisher = {EDP-Sciences}, volume = {42}, number = {6}, year = {2008}, doi = {10.1051/m2an:2008037}, mrnumber = {2473318}, zbl = {1149.74043}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an:2008037/} }
TY - JOUR AU - Ahn, Jeongho TI - Thick obstacle problems with dynamic adhesive contact JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2008 SP - 1021 EP - 1045 VL - 42 IS - 6 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an:2008037/ DO - 10.1051/m2an:2008037 LA - en ID - M2AN_2008__42_6_1021_0 ER -
%0 Journal Article %A Ahn, Jeongho %T Thick obstacle problems with dynamic adhesive contact %J ESAIM: Modélisation mathématique et analyse numérique %D 2008 %P 1021-1045 %V 42 %N 6 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an:2008037/ %R 10.1051/m2an:2008037 %G en %F M2AN_2008__42_6_1021_0
Ahn, Jeongho. Thick obstacle problems with dynamic adhesive contact. ESAIM: Modélisation mathématique et analyse numérique, Tome 42 (2008) no. 6, pp. 1021-1045. doi : 10.1051/m2an:2008037. http://archive.numdam.org/articles/10.1051/m2an:2008037/
[1] A vibrating string with dynamic frictionless impact. Appl. Numer. Math. 57 (2007) 861-884. | MR | Zbl
,[2] Euler-Bernoulli beam with dynamic contact: Discretization, convergence, and numerical results. SIAM J. Numer. Anal. 43 (2005) 1455-1480 (electronic). | MR | Zbl
and ,[3] Existence of solutions for a class of impact problems without viscosity. SIAM J. Math. Anal. 38 (2006) 37-63 (electronic). | MR | Zbl
and ,[4] Euler-Bernoulli beam with dynamic contact: Penalty approximation and existence. Numer. Funct. Anal. Optim. 28 (2007) 1003-1026. | MR | Zbl
and ,[5] Dynamic frictionless contact in linear viscoelasticity. IMA J. Numer. Anal. doi:10.1093/imanum/drm029. | MR | Zbl
and ,[6] A membrane in adhesive contact. SIAM J. Appl. Math. 64 (2003) 152-169. | MR | Zbl
, , , , , and ,[7] Modelling and simulations of a bonded rod. Math. Comput. Model. 42 (2005) 553-572. | MR | Zbl
, and ,[8] The Analysis of Multigrid Methods, Handbook of Numerical Analysis VII. North-Holland, Amsterdam (2000). | MR | Zbl
and ,[9] Radon-Nikodým theorems, Vol. I. North Holland/Elsevier (2002). | MR | Zbl
and ,[10] Variational and numerical analysis of a quasistatic viscoelastic contact problem with adhesion. J. Comput. Appl. Math. 159 (2003) 431-465. | MR | Zbl
, , and ,[11] Dynamic frictionless contact with adhesion. Z. Angew. Math. Phys. 55 (2004) 32-47. | MR | Zbl
, and ,[12] Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer Series in Operations Research I, II. Springer-Verlag, New York (2003). | Zbl
and ,[13] Analysis and numerical simulations of a dynamic contact problem with adhesion. Math. Comput. Modelling 37 (2003) 1317-1333. | MR
, and ,[14] Équilibre des structures qui adhèrent à leur support. C. R. Acad. Sci. Paris Sér. II 295 (1982) 913-916. | MR | Zbl
,[15] Adhérence des solides. J. Méc. Théor. Appl. 6 (1987) 383-407. | Zbl
,[16] Contact with adhesion, in Topics Nonsmooth Mechanics, J.J. Moreau, P.D. Panagiotopoulos and G. Strang Eds. (1988) 157-186 | MR | Zbl
,[17] Contact with adhesion, in ESDA Proceedings of the 1996 Engineering Systems Design and Analysis Conference, A. Lagarde and M. Raous Eds., ASME, New York (1996) 151-156.
, , and ,[18] Elastic beam in adhesive contact. Int. J. Solids Structures 39 (2002) 1145-1164. | MR | Zbl
, , and ,[19] A viscoelastic frictionless contact problem with adhesion. Appl. Anal. 80 (2001) 233-255. | MR | Zbl
, and ,[20] A new class of semismooth Newton-type methods for nonlinear complementarity problems. Comput. Optim. Appl. 11 (1998) 227-251. | MR | Zbl
and ,[21] Modern Analysis. CRC Press, Boca Raton, FL, USA (1998). | Zbl
,[22] A wave problem in a half-space with a unilateral contraint at the boundary. J. Diff. Eq. 53 (1984) 309-361. | MR | Zbl
and ,[23] Viscoélastodynamique monodimensionnelle avec conditions de Signorini. C. R. Acad. Sci. Paris Sér. I 334 (2002) 983-988. | MR | Zbl
and ,[24] A nonsmooth version of Newton's method. Math. Program. 58 (1993) 353-367. | MR | Zbl
and ,[25] A consistent model coupling adhesion, friction, and unilateral contact. Comput. Methods Appl. Mech. Engrg. 177 (1999) 383-399. | MR | Zbl
, and ,[26] A hyperbolic problem of second order with unilateral constraints: the vibrating string with a concave obstacle. J. Math. Anal. Appl. 73 (1980) 138-191. | MR | Zbl
,[27] Models and Analysis of Quasistatic Contact, Lect. Notes Phys. 655. Springer, Berlin-Heidelberg-New York (2004). | Zbl
, and ,[28] Analysis and Approximation of Contact Problems with Adhesion or Damage, Pure and Applied Mathematics 276. Chapman-Hall/CRC Press, New York (2006). | MR | Zbl
, and ,[29] Convolution complementarity problems with application to impact problems. IMA J. Appl. Math. 71 (2006) 92-119. | MR | Zbl
,[30] Differentiating complementarity problems and fractional index convolution complementarity problems. Houston J. Math. 33 (2007) 301-322. | MR | Zbl
,[31] Energy balance for viscoelastic bodies in frictionless contact. (Submitted).
,[32] Partial Differential Equations 1, Applied Mathematical Sciences 115. Springer-Verlag, New York (1996). | MR
,[33] Interpolation Theory, Function Spaces, Differential Operators. North Holland, Amsterdam, New York (1978). | MR | Zbl
,[34] Partial Differential Equations. Cambridge University Press (1987). | MR | Zbl
,Cité par Sources :