Exponential convergence to equilibrium via Lyapounov functionals for reaction-diffusion equations arising from non reversible chemical kinetics
ESAIM: Modélisation mathématique et analyse numérique, Tome 43 (2009) no. 1, pp. 151-172.

We show that the entropy method, that has been used successfully in order to prove exponential convergence towards equilibrium with explicit constants in many contexts, among which reaction-diffusion systems coming out of reversible chemistry, can also be used when one considers a reaction-diffusion system corresponding to an irreversible mechanism of dissociation/recombination, for which no natural entropy is available.

DOI : 10.1051/m2an:2008045
Classification : 35B40, 35B50, 35K57, 80A30, 92E20
Mots-clés : entropy methods, Lyapounov functionals, reaction-diffusion equations
@article{M2AN_2009__43_1_151_0,
     author = {Bisi, Marzia and Desvillettes, Laurent and Spiga, Giampiero},
     title = {Exponential convergence to equilibrium via {Lyapounov} functionals for reaction-diffusion equations arising from non reversible chemical kinetics},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {151--172},
     publisher = {EDP-Sciences},
     volume = {43},
     number = {1},
     year = {2009},
     doi = {10.1051/m2an:2008045},
     mrnumber = {2494798},
     zbl = {1155.35312},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/m2an:2008045/}
}
TY  - JOUR
AU  - Bisi, Marzia
AU  - Desvillettes, Laurent
AU  - Spiga, Giampiero
TI  - Exponential convergence to equilibrium via Lyapounov functionals for reaction-diffusion equations arising from non reversible chemical kinetics
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2009
SP  - 151
EP  - 172
VL  - 43
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/m2an:2008045/
DO  - 10.1051/m2an:2008045
LA  - en
ID  - M2AN_2009__43_1_151_0
ER  - 
%0 Journal Article
%A Bisi, Marzia
%A Desvillettes, Laurent
%A Spiga, Giampiero
%T Exponential convergence to equilibrium via Lyapounov functionals for reaction-diffusion equations arising from non reversible chemical kinetics
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2009
%P 151-172
%V 43
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/m2an:2008045/
%R 10.1051/m2an:2008045
%G en
%F M2AN_2009__43_1_151_0
Bisi, Marzia; Desvillettes, Laurent; Spiga, Giampiero. Exponential convergence to equilibrium via Lyapounov functionals for reaction-diffusion equations arising from non reversible chemical kinetics. ESAIM: Modélisation mathématique et analyse numérique, Tome 43 (2009) no. 1, pp. 151-172. doi : 10.1051/m2an:2008045. http://archive.numdam.org/articles/10.1051/m2an:2008045/

[1] A. Arnold, J.A. Carrillo, L. Desvillettes, J. Dolbeault, A. Jungel, C. Lederman, P.A. Markowich, G. Toscani and C. Villani, Entropies and equilibria of many-particle systems: An essay on recent research. Monat. Mathematik 142 (2004) 35-43. | MR | Zbl

[2] M. Bisi and L. Desvillettes, From reactive Boltzmann equations to reaction-diffusion systems. J. Stat. Phys. 124 (2006) 881-912. | MR | Zbl

[3] M. Bisi and G. Spiga, Diatomic gas diffusing in a background medium: kinetic approach and reaction-diffusion equations. Commun. Math. Sci. 4 (2006) 779-798. | MR | Zbl

[4] M. Bisi and G. Spiga, Dissociation and recombination of a diatomic gas in a background medium. Proceedings of 25th International Symposium on Rarefied Gas Dynamics (to appear). | MR

[5] M. Cáceres, J. Carrillo and G. Toscani, Long-time behavior for a nonlinear fourth order parabolic equation. Trans. Amer. Math. Soc. 357 (2005) 1161-1175. | MR | Zbl

[6] J.A. Carrillo and G. Toscani, Asymptotic L 1 -decay of solutions of the porous medium equation to self-similarity. Indiana University Math. J. 49 (2000) 113-142. | MR | Zbl

[7] M. Del Pino and J. Dolbeault, Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions. J. Math. Pures Appl. 81 (2002) 847-875. | MR | Zbl

[8] L. Desvillettes, About entropy methods for reaction-diffusion equations. Rivista Matematica dell'Università di Parma 7 (2007) 81-123. | MR | Zbl

[9] L. Desvillettes and K. Fellner, Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations. J. Math. Anal. Appl. 319 (2006) 157-176. | MR | Zbl

[10] L. Desvillettes and K. Fellner, Entropy methods for reaction-diffusion systems: Degenerate diffusion. Discrete Contin. Dyn. Syst. Supplement (2007) 304-312. | MR | Zbl

[11] L. Desvillettes and K. Fellner, Entropy methods for reaction-diffusion equations: slowly growing a-priori bounds. Revista Mat. Iberoamericana (to appear). | MR | Zbl

[12] L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials 25 (2000) 261-298. | MR | Zbl

[13] V. Giovangigli, Multicomponent Flow Modeling1999). | MR | Zbl

[14] M. Groppi, A. Rossani and G. Spiga, Kinetic theory of a diatomic gas with reactions of dissociation and recombination through a transition state. J. Phys. A 33 (2000) 8819-8833. | MR | Zbl

[15] M. Kirane, On stabilization of solutions of the system of parabolic differential equations describing the kinetics of an auto-catalytic reversible chemical reaction. Bull. Institute Math. Academia Sinica 18 (1990) 369-377. | MR | Zbl

[16] O.A. Ladyzenskaya, V.A. Solonnikov and N.N. Uralceva, Linear and Quasi-linear Equations of Parabolic Type, Trans. Math. Monographs 23. American Mathematical Society, Providence (1968). | Zbl

[17] K. Masuda, On the global existence and asymptotic behavior of solution of reaction-diffusion equations. Hokkaido Math. J. 12 (1983) 360-370. | MR | Zbl

[18] J.A. Mclennan, Boltzmann equation for a dissociating gas. J. Stat. Phys. 57 (1989) 887-905.

[19] Y. Sone, Kinetic Theory and Fluid Dynamics2002). | MR | Zbl

[20] G. Toscani and C. Villani, Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation. Comm. Math. Phys. 203 (1999) 667-706. | MR | Zbl

[21] Y. Yoshizawa, Wave structures of a chemically reacting gas by the kinetic theory of gases, in Rarefied Gas Dynamics, J.L. Potter Ed., A.I.A.A., New York (1977) 501-517.

Cité par Sources :