We show that the entropy method, that has been used successfully in order to prove exponential convergence towards equilibrium with explicit constants in many contexts, among which reaction-diffusion systems coming out of reversible chemistry, can also be used when one considers a reaction-diffusion system corresponding to an irreversible mechanism of dissociation/recombination, for which no natural entropy is available.
Mots clés : entropy methods, Lyapounov functionals, reaction-diffusion equations
@article{M2AN_2009__43_1_151_0, author = {Bisi, Marzia and Desvillettes, Laurent and Spiga, Giampiero}, title = {Exponential convergence to equilibrium via {Lyapounov} functionals for reaction-diffusion equations arising from non reversible chemical kinetics}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {151--172}, publisher = {EDP-Sciences}, volume = {43}, number = {1}, year = {2009}, doi = {10.1051/m2an:2008045}, mrnumber = {2494798}, zbl = {1155.35312}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an:2008045/} }
TY - JOUR AU - Bisi, Marzia AU - Desvillettes, Laurent AU - Spiga, Giampiero TI - Exponential convergence to equilibrium via Lyapounov functionals for reaction-diffusion equations arising from non reversible chemical kinetics JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2009 SP - 151 EP - 172 VL - 43 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an:2008045/ DO - 10.1051/m2an:2008045 LA - en ID - M2AN_2009__43_1_151_0 ER -
%0 Journal Article %A Bisi, Marzia %A Desvillettes, Laurent %A Spiga, Giampiero %T Exponential convergence to equilibrium via Lyapounov functionals for reaction-diffusion equations arising from non reversible chemical kinetics %J ESAIM: Modélisation mathématique et analyse numérique %D 2009 %P 151-172 %V 43 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an:2008045/ %R 10.1051/m2an:2008045 %G en %F M2AN_2009__43_1_151_0
Bisi, Marzia; Desvillettes, Laurent; Spiga, Giampiero. Exponential convergence to equilibrium via Lyapounov functionals for reaction-diffusion equations arising from non reversible chemical kinetics. ESAIM: Modélisation mathématique et analyse numérique, Tome 43 (2009) no. 1, pp. 151-172. doi : 10.1051/m2an:2008045. http://archive.numdam.org/articles/10.1051/m2an:2008045/
[1] Entropies and equilibria of many-particle systems: An essay on recent research. Monat. Mathematik 142 (2004) 35-43. | MR | Zbl
, , , , , , , and ,[2] From reactive Boltzmann equations to reaction-diffusion systems. J. Stat. Phys. 124 (2006) 881-912. | MR | Zbl
and ,[3] Diatomic gas diffusing in a background medium: kinetic approach and reaction-diffusion equations. Commun. Math. Sci. 4 (2006) 779-798. | MR | Zbl
and ,[4] Dissociation and recombination of a diatomic gas in a background medium. Proceedings of 25th International Symposium on Rarefied Gas Dynamics (to appear). | MR
and ,[5] Long-time behavior for a nonlinear fourth order parabolic equation. Trans. Amer. Math. Soc. 357 (2005) 1161-1175. | MR | Zbl
, and ,[6] Asymptotic -decay of solutions of the porous medium equation to self-similarity. Indiana University Math. J. 49 (2000) 113-142. | MR | Zbl
and ,[7] Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions. J. Math. Pures Appl. 81 (2002) 847-875. | MR | Zbl
and ,[8] About entropy methods for reaction-diffusion equations. Rivista Matematica dell'Università di Parma 7 (2007) 81-123. | MR | Zbl
,[9] Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations. J. Math. Anal. Appl. 319 (2006) 157-176. | MR | Zbl
and ,[10] Entropy methods for reaction-diffusion systems: Degenerate diffusion. Discrete Contin. Dyn. Syst. Supplement (2007) 304-312. | MR | Zbl
and ,[11] Entropy methods for reaction-diffusion equations: slowly growing a-priori bounds. Revista Mat. Iberoamericana (to appear). | MR | Zbl
and ,[12] On the spatially homogeneous Landau equation for hard potentials 25 (2000) 261-298. | MR | Zbl
and ,[13] Multicomponent Flow Modeling1999). | MR | Zbl
,[14] Kinetic theory of a diatomic gas with reactions of dissociation and recombination through a transition state. J. Phys. A 33 (2000) 8819-8833. | MR | Zbl
, and ,[15] On stabilization of solutions of the system of parabolic differential equations describing the kinetics of an auto-catalytic reversible chemical reaction. Bull. Institute Math. Academia Sinica 18 (1990) 369-377. | MR | Zbl
,[16] Linear and Quasi-linear Equations of Parabolic Type, Trans. Math. Monographs 23. American Mathematical Society, Providence (1968). | Zbl
, and ,[17] On the global existence and asymptotic behavior of solution of reaction-diffusion equations. Hokkaido Math. J. 12 (1983) 360-370. | MR | Zbl
,[18] Boltzmann equation for a dissociating gas. J. Stat. Phys. 57 (1989) 887-905.
,[19] Kinetic Theory and Fluid Dynamics2002). | MR | Zbl
,[20] Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation. Comm. Math. Phys. 203 (1999) 667-706. | MR | Zbl
and ,[21] Wave structures of a chemically reacting gas by the kinetic theory of gases, in Rarefied Gas Dynamics, J.L. Potter Ed., A.I.A.A., New York (1977) 501-517.
,Cité par Sources :