We developed a mimetic finite difference method for solving elliptic equations with tensor coefficients on polyhedral meshes. The first-order convergence estimates in a mesh-dependent norm are derived.
Mots-clés : finite differences, polyhedral meshes, diffusion equation, error estimates
@article{M2AN_2009__43_2_277_0, author = {Brezzi, Franco and Buffa, Annalisa and Lipnikov, Konstantin}, title = {Mimetic finite differences for elliptic problems}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {277--295}, publisher = {EDP-Sciences}, volume = {43}, number = {2}, year = {2009}, doi = {10.1051/m2an:2008046}, mrnumber = {2512497}, zbl = {1177.65164}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an:2008046/} }
TY - JOUR AU - Brezzi, Franco AU - Buffa, Annalisa AU - Lipnikov, Konstantin TI - Mimetic finite differences for elliptic problems JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2009 SP - 277 EP - 295 VL - 43 IS - 2 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an:2008046/ DO - 10.1051/m2an:2008046 LA - en ID - M2AN_2009__43_2_277_0 ER -
%0 Journal Article %A Brezzi, Franco %A Buffa, Annalisa %A Lipnikov, Konstantin %T Mimetic finite differences for elliptic problems %J ESAIM: Modélisation mathématique et analyse numérique %D 2009 %P 277-295 %V 43 %N 2 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an:2008046/ %R 10.1051/m2an:2008046 %G en %F M2AN_2009__43_2_277_0
Brezzi, Franco; Buffa, Annalisa; Lipnikov, Konstantin. Mimetic finite differences for elliptic problems. ESAIM: Modélisation mathématique et analyse numérique, Tome 43 (2009) no. 2, pp. 277-295. doi : 10.1051/m2an:2008046. http://archive.numdam.org/articles/10.1051/m2an:2008046/
[1] Principles of mimetic discretizations of differential operators, IMA Hot Topics Workshop on Compatible Spatial Discretizations 142, D. Arnold, P. Bochev, R. Lehoucq, R. Nicolaides and M. Shashkov Eds., Springer-Verlag (2006). | MR | Zbl
and ,[2] The mathematical theory of finite element methods. Springer-Verlag, Berlin/Heidelberg (1994). | MR | Zbl
and ,[3] General framework for cochain approximations of differential forms. Technical report, Instituto di Mathematica Applicata a Technologie Informatiche (in preparation).
and ,[4] Convergence of mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43 (2005) 1872-1896. | MR | Zbl
, and ,[5] A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Mod. Meth. Appl. Sci. 15 (2005) 1533-1552. | MR | Zbl
, and ,[6] Convergence of mimetic finite difference method for diffusion problems on polyhedral meshes with curved faces. Math. Mod. Meth. Appl. Sci. 16 (2006) 275-297. | MR | Zbl
, and ,[7] A new discretization methodology for diffusion problems on generalized polyhedral meshes. Comput. Methods Appl. Mech. Engrg. 196 (2007) 3692-3692. | MR | Zbl
, , and ,[8] A tensor artificial viscosity using a mimetic finite difference algorithm. J. Comput. Phys. 172 (2001) 739-765. | MR | Zbl
and ,[9] The finite element method for elliptic problems. North-Holland, New York (1978). | MR | Zbl
,[10] Elliptic boundary value problems on corner domains: smoothness and asymptotics of solutions. Springer-Verlag, Berlin, New York (1988). | MR | Zbl
,[11] New element lops time off CFD simulations. Mashine Design 78 (2006) 154-155.
,[12] A family of -conforming finite element spaces for calculations on 3D grids with pinch-outs. Numer. Linear Algebra Appl. 13 (2006) 789-799. | MR | Zbl
, and ,[13] A discrete operator calculus for finite difference approximations. Comput. Meth. Appl. Mech. Engrg. 187 (2000) 365-383. | MR | Zbl
, and ,[14] A mixed finite element method for second order elliptic problems, in Mathematical Aspects of the Finite Element Method, I. Galligani and E. Magenes Eds., Springer-Verlag, Berlin-Heilderberg-New York (1977) 292-315. | MR | Zbl
and ,Cité par Sources :