The problem of modeling acoustic waves scattered by an object with Neumann boundary condition is considered. The boundary condition is taken into account by means of the fictitious domain method, yielding a first order in time mixed variational formulation for the problem. The resulting system is discretized with two families of mixed finite elements that are compatible with mass lumping. We present numerical results illustrating that the Neumann boundary condition on the object is not always correctly taken into account when the first family of mixed finite elements is used. We, therefore, introduce the second family of mixed finite elements for which a theoretical convergence analysis is presented and error estimates are obtained. A numerical study of the convergence is also considered for a particular object geometry which shows that our theoretical error estimates are optimal.
Mots-clés : mixed finite elements, fictitious domain method, domain embedding method, acoustic waves, convergence analysis
@article{M2AN_2009__43_2_377_0, author = {B\'ecache, Eliane and Rodr{\'\i}guez, Jeronimo and Tsogka, Chrysoula}, title = {Convergence results of the fictitious domain method for a mixed formulation of the wave equation with a {Neumann} boundary condition}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {377--398}, publisher = {EDP-Sciences}, volume = {43}, number = {2}, year = {2009}, doi = {10.1051/m2an:2008047}, mrnumber = {2512501}, zbl = {1161.65071}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/m2an:2008047/} }
TY - JOUR AU - Bécache, Eliane AU - Rodríguez, Jeronimo AU - Tsogka, Chrysoula TI - Convergence results of the fictitious domain method for a mixed formulation of the wave equation with a Neumann boundary condition JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2009 SP - 377 EP - 398 VL - 43 IS - 2 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/m2an:2008047/ DO - 10.1051/m2an:2008047 LA - en ID - M2AN_2009__43_2_377_0 ER -
%0 Journal Article %A Bécache, Eliane %A Rodríguez, Jeronimo %A Tsogka, Chrysoula %T Convergence results of the fictitious domain method for a mixed formulation of the wave equation with a Neumann boundary condition %J ESAIM: Modélisation mathématique et analyse numérique %D 2009 %P 377-398 %V 43 %N 2 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/m2an:2008047/ %R 10.1051/m2an:2008047 %G en %F M2AN_2009__43_2_377_0
Bécache, Eliane; Rodríguez, Jeronimo; Tsogka, Chrysoula. Convergence results of the fictitious domain method for a mixed formulation of the wave equation with a Neumann boundary condition. ESAIM: Modélisation mathématique et analyse numérique, Tome 43 (2009) no. 2, pp. 377-398. doi : 10.1051/m2an:2008047. http://archive.numdam.org/articles/10.1051/m2an:2008047/
[1] The finite element method with lagrangian multipliers. Numer. Math. 20 (1973) 179-192. | MR | Zbl
,[2] Éléments finis mixtes et condensation de masse en élastodynamique linéaire, (i) Construction. C. R. Acad. Sci. Paris Sér. I 325 (1997) 545-550. | MR | Zbl
, and ,[3] An analysis of new mixed finite elements for the approximation of wave propagation problems. SINUM 37 (2000) 1053-1084. | MR | Zbl
, and ,[4] Fictitious domains, mixed finite elements and perfectly matched layers for 2d elastic wave propagation. J. Comp. Acoust. 9 (2001) 1175-1203. | MR
, and ,[5] A new family of mixed finite elements for the linear elastodynamic problem. SINUM 39 (2002) 2109-2132. | MR | Zbl
, and ,[6] Time-domain simulation of a guitar: Model and method. J. Acoust. Soc. Am. 6 (2003) 3368-3383.
, , and ,[7] On the convergence of the fictitious domain method for wave equation problems. Technical Report RR-5802, INRIA (2006).
, and ,[8] A fictitious domain method with mixed finite elements for elastodynamics. SIAM J. Sci. Comput. 29 (2007) 1244-1267. | MR
, and ,[9] A perfectly matched layer for the absorption of electromagnetic waves. J. Comp. Phys. 114 (1994) 185-200. | MR | Zbl
,[10] Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991). | MR | Zbl
and ,[11] Application of the PML absorbing layer model to the linear elastodynamic problem in anisotropic heteregeneous media. Geophysics 66 (2001) 294-307.
and ,[12] Fictitious domain method for unsteady problems: Application to electromagnetic scattering. J. Comput. Phys. 138 (1997) 907-938. | MR | Zbl
, and ,[13] Application des méthodes de domaines fictifs à la modélisation des structures rayonnantes tridimensionnelles. Ph.D. Thesis, SupAero, France (1998).
,[14] Error analysis of a fictitious domain method applied to a Dirichlet problem. Japan J. Indust. Appl. Math. 12 (1995) 487-514. | MR | Zbl
and ,[15] Finite element methods for Navier-Stokes equations - Theory and algorithms, Springer Series in Computational Mathematics 5. Springer-Verlag, Berlin (1986). | MR | Zbl
and ,[16] Numerical methods for fluids, Part 3, Chapter 8, in Handbook of Numerical Analysis IX, P.G. Ciarlet and J.L. Lions Eds., North-Holland, Amsterdam (2003) x+1176. | MR | Zbl
,[17] On the solution of the Dirichlet problem for linear elliptic operators by a distributed Lagrange multiplier method. C. R. Acad. Sci. Paris Sér. I Math. 327 (1998) 693-698. | MR | Zbl
and ,[18] A fictitious domain method for Dirichlet problem and applications. Comput. Methods Appl. Mech. Engrg. 111 (1994) 283-303. | MR | Zbl
, and ,[19] Singularities in boundary value problems. Springer-Verlag, Masson (1992). | MR | Zbl
,[20] Fictitious domain methods for the numerical solution of two-dimensional scattering problems. J. Comput. Phys. 145 (1998) 89-109. | MR | Zbl
, , and ,[21] A domain embedding method for scattering problems with an absorbing boundary or a perfectly matched layer. J. Comput. Acoust. 11 (2003) 159-174. | MR
, and ,[22] Functional analysis and semigroups, Colloquium Publications 31. Rev. edn., Providence, R.I., American Mathematical Society (1957). | MR | Zbl
and ,[23] Analyse numérique - Domaines fictifs, éléments finis H(div) et condition de Neumann : le problème de la condition inf-sup. C. R. Acad. Sci. Paris Sér. I Math. 328 (1999) 1225-1230. | MR | Zbl
and .[24] Fictitious component and domain decomposition methods for the solution of eigenvalue problems, in Computing methods in applied sciences and engineering VII (Versailles, 1985), North-Holland, Amsterdam (1986) 155-172. | Zbl
,[25] A new family of mixed finite elements in . Numer. Math. 50 (1986) 57-81. | Zbl
,[26] Domaines fictifs pour la modélisation d'un probème d'interaction fluide-structure : simulation de la timbale. Ph.D. Thesis, Paris IX, France (1999).
,Cité par Sources :