Random fractals generated by a local gaussian process indexed by a class of functions
ESAIM: Probability and Statistics, Tome 15 (2011), pp. 249-269.

In this paper, we extend the results of Orey and Taylor [S. Orey and S.J. Taylor, How often on a Brownian path does the law of the iterated logarithm fail? Proc. London Math. Soc. 28 (1974) 174-192] relative to random fractals generated by oscillations of Wiener processes to a multivariate framework. We consider a setup where Gaussian processes are indexed by classes of functions.

DOI : 10.1051/ps/2010003
Classification : 60J65, 28A80
Mots-clés : random fractals, Hausdorff dimension, Wiener process
@article{PS_2011__15__249_0,
     author = {Coiffard, Claire},
     title = {Random fractals generated by a local gaussian process indexed by a class of functions},
     journal = {ESAIM: Probability and Statistics},
     pages = {249--269},
     publisher = {EDP-Sciences},
     volume = {15},
     year = {2011},
     doi = {10.1051/ps/2010003},
     mrnumber = {2870515},
     zbl = {1277.60067},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ps/2010003/}
}
TY  - JOUR
AU  - Coiffard, Claire
TI  - Random fractals generated by a local gaussian process indexed by a class of functions
JO  - ESAIM: Probability and Statistics
PY  - 2011
SP  - 249
EP  - 269
VL  - 15
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ps/2010003/
DO  - 10.1051/ps/2010003
LA  - en
ID  - PS_2011__15__249_0
ER  - 
%0 Journal Article
%A Coiffard, Claire
%T Random fractals generated by a local gaussian process indexed by a class of functions
%J ESAIM: Probability and Statistics
%D 2011
%P 249-269
%V 15
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ps/2010003/
%R 10.1051/ps/2010003
%G en
%F PS_2011__15__249_0
Coiffard, Claire. Random fractals generated by a local gaussian process indexed by a class of functions. ESAIM: Probability and Statistics, Tome 15 (2011), pp. 249-269. doi : 10.1051/ps/2010003. http://archive.numdam.org/articles/10.1051/ps/2010003/

[1] M. Arcones, The large deviation principle of stochastic processes. II. Theory Probab. Appl. 48 (2003) 19-44. | MR | Zbl

[2] H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Statistics 23 (1952) 493-507. | MR | Zbl

[3] P. Deheuvels and M.A. Lifshits, On the Hausdorff dimension of the set generated by exceptional oscillations of a Wiener process. Studia. Sci. Math. Hungar. 33 (1997) 75-110. | MR | Zbl

[4] P. Deheuvels and D.M. Mason, Random fractals generated by oscillations of processes with stationary and independent increments. Probability in Banach Spaces. 9 (1994) 73-90. (J. Hoffman-Jørgensen, J. Kuelbs and M.B. Marcus, eds.) | MR | Zbl

[5] P. Deheuvels and D.M. Mason, On the fractal nature of empirical increments. Ann. Probab. 23 (1995) 355-387. | MR | Zbl

[6] Z. Dindar, On the Hausdorff dimension of the set generated by exceptional oscillations of a two-parameter Wiener process. J. Multivariate Anal. 79 (2001) 52-70. | MR | Zbl

[7] K.J. Falconer, The Geometry of Fractal Sets. Cambridge University Press, Cambridge (1985). | MR | Zbl

[8] P. Lévy, Théorie de l'addition des variables aléatoires, Gauthier-Villars et Cie (1937) | JFM | Zbl

[9] D.M. Mason, A uniform functional law of the logarithm for a local Gaussian process. Progress in Probability 55 (2003) 135-151. | MR | Zbl

[10] D.M. Mason, A uniform functional law of the logarithm for the local empirical process. Ann. Probab. 32 (2004) 1391-1418. | MR | Zbl

[11] S. Orey and S.J. Taylor, How often on a Brownian path does the law of the iterated logarithm fail? Proc. London Math. Soc. 28 (1974) 174-192. | MR | Zbl

[12] M. Schilder, Some asymptotic formulas for Wiener integrals. Trans. Amer. Math. Soc. 125 (1966) 63-85. | MR | Zbl

[13] M. Talagrand, Sharper bounds for gaussian and empirical processes. Ann. Probab. 22 (1994) 28-76. | MR | Zbl

[14] A.W. Van Der Vaart and A.J. Wellner, Weak convergence and Empirical Processes. Springer, New-York (1996). | MR | Zbl

Cité par Sources :