A note on spider walks
ESAIM: Probability and Statistics, Tome 15 (2011), pp. 390-401.

Spider walks are systems of interacting particles. The particles move independently as long as their movements do not violate some given rules describing the relative position of the particles; moves that violate the rules are not realized. The goal of this paper is to study qualitative properties, as recurrence, transience, ergodicity, and positive rate of escape of these Markov processes.

DOI : 10.1051/ps/2010008
Classification : 60J27, 60K99
Mots-clés : spider walk, recurrence, transience, rate of escape
@article{PS_2011__15__390_0,
     author = {Gallesco, Christophe and M\"uller, Sebastian and Popov, Serguei},
     title = {A note on spider walks},
     journal = {ESAIM: Probability and Statistics},
     pages = {390--401},
     publisher = {EDP-Sciences},
     volume = {15},
     year = {2011},
     doi = {10.1051/ps/2010008},
     mrnumber = {2870522},
     zbl = {1263.60071},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ps/2010008/}
}
TY  - JOUR
AU  - Gallesco, Christophe
AU  - Müller, Sebastian
AU  - Popov, Serguei
TI  - A note on spider walks
JO  - ESAIM: Probability and Statistics
PY  - 2011
SP  - 390
EP  - 401
VL  - 15
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ps/2010008/
DO  - 10.1051/ps/2010008
LA  - en
ID  - PS_2011__15__390_0
ER  - 
%0 Journal Article
%A Gallesco, Christophe
%A Müller, Sebastian
%A Popov, Serguei
%T A note on spider walks
%J ESAIM: Probability and Statistics
%D 2011
%P 390-401
%V 15
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ps/2010008/
%R 10.1051/ps/2010008
%G en
%F PS_2011__15__390_0
Gallesco, Christophe; Müller, Sebastian; Popov, Serguei. A note on spider walks. ESAIM: Probability and Statistics, Tome 15 (2011), pp. 390-401. doi : 10.1051/ps/2010008. http://archive.numdam.org/articles/10.1051/ps/2010008/

[1] T. Antal, P.L. Krapivsky and K. Mallick, Molecular spiders in one dimension. J. Stat. Mech. (2007). | MR

[2] G. Fayolle, V.A. Malyshev and M.V. Menshikov, Topics in the constructive theory of countable Markov chains. Cambridge University Press, Cambridge (1995). | MR | Zbl

[3] C. Gallesco, S. Müller, S. Popov and M. Vachkovskaia, Spiders in random environment. arXiv:1001.2533 (2010). | Zbl

[4] M. Kanai, Rough isometries and the parabolicity of Riemannian manifolds. J. Math. Soc. Jpn 38 (1986) 227-238. | MR | Zbl

[5] J.G. Kemeny, J.L. Snell and A.W. Knapp, Denumerable Markov Chains. Graduate Text in Mathematics 40, 2nd edition, Springer Verlag (1976). | MR | Zbl

[6] J. Lamperti, Criterion for the recurrence or transience of stochastic process. I. J. Math. Anal. Appl. 1 (1960) 314-330. | MR | Zbl

[7] R. Lyons and Y. Peres, Probability on Trees and Networks. Cambridge University Press. In preparation. Current version available at http://mypage.iu.edu/ rdlyons/, (2009).

[8] W. Woess, Random walks on infinite graphs and groups, Cambridge Tracts in Mathematics 138. Cambridge University Press, Cambridge (2000). | MR | Zbl

[9] W. Woess, Denumerable Markov chains. EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich (2009). | MR | Zbl

Cité par Sources :