We solve explicitly the following problem: for a given probability measure μ, we specify a generalised martingale diffusion (Xt) which, stopped at an independent exponential time T, is distributed according to μ. The process (Xt) is specified via its speed measure m. We present two heuristic arguments and three proofs. First we show how the result can be derived from the solution of [Bertoin and Le Jan, Ann. Probab. 20 (1992) 538-548.] to the Skorokhod embedding problem. Secondly, we give a proof exploiting applications of Krein's spectral theory of strings to the study of linear diffusions. Finally, we present a novel direct probabilistic proof based on a coupling argument.
Mots-clés : time-homogeneous diffusion, generalised diffusion, exponential time, Skorokhod embedding problem, Bertoin-Le Jan stopping time
@article{PS_2011__15__S11_0, author = {Cox, Alexander M. G. and Hobson, David and Ob{\l}\'oj, Jan}, title = {Time-homogeneous diffusions with a given marginal at a random time}, journal = {ESAIM: Probability and Statistics}, pages = {S11--S24}, publisher = {EDP-Sciences}, volume = {15}, year = {2011}, doi = {10.1051/ps/2010021}, mrnumber = {2817342}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ps/2010021/} }
TY - JOUR AU - Cox, Alexander M. G. AU - Hobson, David AU - Obłój, Jan TI - Time-homogeneous diffusions with a given marginal at a random time JO - ESAIM: Probability and Statistics PY - 2011 SP - S11 EP - S24 VL - 15 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ps/2010021/ DO - 10.1051/ps/2010021 LA - en ID - PS_2011__15__S11_0 ER -
%0 Journal Article %A Cox, Alexander M. G. %A Hobson, David %A Obłój, Jan %T Time-homogeneous diffusions with a given marginal at a random time %J ESAIM: Probability and Statistics %D 2011 %P S11-S24 %V 15 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ps/2010021/ %R 10.1051/ps/2010021 %G en %F PS_2011__15__S11_0
Cox, Alexander M. G.; Hobson, David; Obłój, Jan. Time-homogeneous diffusions with a given marginal at a random time. ESAIM: Probability and Statistics, Tome 15 (2011), pp. S11-S24. doi : 10.1051/ps/2010021. http://archive.numdam.org/articles/10.1051/ps/2010021/
[1] Representation of measures by balayage from a regular recurrent point. Ann. Probab. 20 (1992) 538-548. | MR | Zbl
and ,[2] Local Variance Gamma. Private communication (2008).
,[3] Determining volatility surfaces and option values from an implied volatility smile, in Quantitative Analysis of Financial Markets II, edited by M. Avellaneda. World Scientific (1998) 163-191. | MR | Zbl
and ,[4] Potential processes. Trans. Amer. Math. Soc. 226 (1977) 39-58. | MR | Zbl
,[5] Extending Chacon-Walsh: minimality and generalised starting distributions, in Séminaire de Probabilités XLI. Lecture Notes in Math. 1934, Springer, Berlin (2008) 233-264. | MR | Zbl
,[6] Measure theory. Graduate Texts Math. 143, Springer-Verlag, New York (1994). | MR | Zbl
,[7] Pricing with a smile. Risk 7 (1994) 18-20.
,[8] Gaussian processes, function theory, and the inverse spectral problem. Probab. Math. Statist. 31. Academic Press (Harcourt Brace Jovanovich Publishers), New York (1976). | MR | Zbl
and ,[9] The Skorokhod Embedding Problem and Model-Independent Bounds for Option Prices, in Paris-Princeton Lectures on Mathematical Finance 2010, edited by R.A. Carmona, E. Çinlar, I. Ekeland, E. Jouini, J.A. Scheinkman and N. Touzi. Lecture Notes in Math. 2003, Springer (2010) 267-318. www.warwick.ac.uk/go/dhobson/ | MR | Zbl
,[10] Essentials of stochastic processes. Translations Math. Monographs 231, American Mathematical Society, Providence, RI, (2006), translated from the 1957 Japanese original by Yuji Ito. | MR | Zbl
,[11] Identifying the volatility of underlying assets from option prices. Inverse Problems 17 (2001) 137-155. | MR | Zbl
and ,[12] Criteria for the discreteness of the spectrum of a singular string. Izv. Vysš. Učebn. Zaved. Matematika 2 (1958) 136-153. | MR
and ,[13] Characterization of the Levy measures of inverse local times of gap diffusion, in Seminar on Stochastic Processes (Evanston, Ill., 1981). Progr. Probab. Statist. 1, Birkhäuser Boston, Mass. (1981) 53-78. | MR | Zbl
,[14] Kreĭn's spectral theory of strings and generalized diffusion processes, in Functional analysis in Markov processes (Katata/Kyoto, 1981). Lecture Notes in Math. 923, Springer, Berlin (1982) 235-259. | MR | Zbl
and ,[15] On a generalization of investigations of Stieltjes. Doklady Akad. Nauk SSSR (N.S.) 87 (1952) 881-884. | MR | Zbl
,[16] On spectral measures of strings and excursions of quasi diffusions, in Séminaire de Probabilités XXIII. Lecture Notes in Math. 1372, Springer, Berlin (1989) 490-502. | Numdam | MR | Zbl
and ,[17] Making Markov martingales meet marginals: with explicit constructions. Bernoulli 8 (2002) 509-536. | MR | Zbl
and ,[18] On embedding right continuous martingales in Brownian motion. Ann. Math. Statist. 43 (1972) 1293-1311. | MR | Zbl
,[19] The Skorokhod embedding problem and its offspring. Prob. Surveys 1 (2004) 321-392. | MR | Zbl
,[20] Diffusions, Markov processes, and martingales, volume 2, Itô Calculus. Cambridge University Press, Cambridge, reprint of the second edition of 1994 (2000). | MR | Zbl
and ,Cité par Sources :