For 0 < α ≤ 2 and 0 < H < 1, an α-time fractional Brownian motion is an iterated process Z = {Z(t) = W(Y(t)), t ≥ 0} obtained by taking a fractional Brownian motion {W(t), t ∈ ℝ} with Hurst index 0 < H < 1 and replacing the time parameter with a strictly α-stable Lévy process {Y(t), t ≥ 0} in ℝ independent of {W(t), t ∈ R}. It is shown that such processes have natural connections to partial differential equations and, when Y is a stable subordinator, can arise as scaling limit of randomly indexed random walks. The existence, joint continuity and sharp Hölder conditions in the set variable of the local times of a d-dimensional α-time fractional Brownian motion X = {X(t), t ∈ ℝ+} defined by X(t) = (X1(t), ..., Xd(t)), where t ≥ 0 and X1, ..., Xd are independent copies of Z, are investigated. Our methods rely on the strong local nondeterminism of fractional Brownian motion.
Mots-clés : fractional brownian motion, strictlyα-stable Lévy process, α-time brownian motion, α-time fractional brownian motion, partial differential equation, local time, Hölder condition
@article{PS_2012__16__1_0, author = {Nane, Erkan and Wu, Dongsheng and Xiao, Yimin}, title = {$\alpha $-time fractional brownian motion: {PDE} connections and local times}, journal = {ESAIM: Probability and Statistics}, pages = {1--24}, publisher = {EDP-Sciences}, volume = {16}, year = {2012}, doi = {10.1051/ps/2011103}, mrnumber = {2900521}, zbl = {1278.60074}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ps/2011103/} }
TY - JOUR AU - Nane, Erkan AU - Wu, Dongsheng AU - Xiao, Yimin TI - $\alpha $-time fractional brownian motion: PDE connections and local times JO - ESAIM: Probability and Statistics PY - 2012 SP - 1 EP - 24 VL - 16 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ps/2011103/ DO - 10.1051/ps/2011103 LA - en ID - PS_2012__16__1_0 ER -
%0 Journal Article %A Nane, Erkan %A Wu, Dongsheng %A Xiao, Yimin %T $\alpha $-time fractional brownian motion: PDE connections and local times %J ESAIM: Probability and Statistics %D 2012 %P 1-24 %V 16 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ps/2011103/ %R 10.1051/ps/2011103 %G en %F PS_2012__16__1_0
Nane, Erkan; Wu, Dongsheng; Xiao, Yimin. $\alpha $-time fractional brownian motion: PDE connections and local times. ESAIM: Probability and Statistics, Tome 16 (2012), pp. 1-24. doi : 10.1051/ps/2011103. http://archive.numdam.org/articles/10.1051/ps/2011103/
[1] The Geometry of Random Fields. Wiley, New York (1981). | MR | Zbl
,[2] Brownian-time processes : the pde connection and the half-derivative generator. Ann. Probab. 29 (2001) 1780-1795. | MR | Zbl
and ,[3] On the Small deviation problem for some iterated processes. Electron. J. Probab. 14 (2009) 1992-2010. | MR | Zbl
and ,[4] Brownian subordinators and fractional Cauchy problems. Trans. Amer. Math. Soc. 361 (2009) 3915-3930. | MR | Zbl
, and ,[5] Space-time duality for fractional diffusion. J. Appl. Probab. 46 (2009) 1100-1115. | MR | Zbl
, and ,[6] Equations of Mathematical Physics and composition of Brownian and Cauchy processes. Stoch. Anal. Appl. 29 (2011) 551-569. | MR | Zbl
, and ,[7] Local times and sample function properties of stationary Gaussian processes. Trans. Amer. Math. Soc. 137 (1969) 277-299. | MR | Zbl
,[8] Local nondeterminism and local times of Gaussian processes. Indiana Univ. Math. J. 23 (1973) 69-94. | MR | Zbl
,[9] Cambridge University Press (1996). | MR | Zbl
, .[10] Some path properties of iterated Brownian motion, in Seminar on Stochastic Processes, edited by E.Çinlar, K.L. Chung and M.J. Sharpe. Birkhäuser, Boston (1993) 67-87. | MR | Zbl
,[11] The level set of iterated Brownian motion, Séminaire de Probabilités XXIX, edited by J. Azéma, M. Emery, P.-A. Meyer and M. Yor. Lect. Notes Math. 1613 (1995) 231-236. | EuDML | Numdam | MR | Zbl
and ,[12] Brownian motion in a Brownian crack. Ann. Appl. Probab. 8 (1998) 708-748. | MR | Zbl
and ,[13] The local time of iterated Brownian motion. J. Theoret. Probab. 9 (1996) 717-743. | MR | Zbl
, , and ,[14] Joint continuity of Gaussian local times. Ann. Probab. 10 (1982) 810-817. | MR | Zbl
and ,[15] The invariance principle for stationary processes. Teor. Verojatnost. i Primenen. 15 (1970) 498-509. | MR | Zbl
,[16] Higher order PDE's and symmetric stable processes. Probab. Theory Relat. Fields 129 (2004) 495-536. | MR | Zbl
,[17] Iterated Brownian motion in an open set. Ann. Appl. Probab. 14 (2004) 1529-1558. | MR | Zbl
,[18] Composition of processes and related partial differential equations. J. Theor. Probab. 24 (2011) 342-375. | MR | Zbl
and ,[19] Sample function properties of multi-parameter stable processes. Z. Wahrsch. verw. Geb. 56 (1981) 195-228. | MR | Zbl
,[20] Selfsimilar Processes. Princeton University Press, Princeton (2002). | MR | Zbl
and ,[21] Occupation densities. Ann. Probab. 8 (1980) 1-67. | MR | Zbl
and ,[22] Fokker-Plank-Kolmogorv equations associated with SDEs driven by time-changed fractional Brownian motion. Proc. Amer. Math. Soc. 139 (2011) 691-705. | MR | Zbl
, and ,[23] Hausdorff and packing measures of the level sets of iterated Brownian motion. J. Theoret. Probab. 12 (1999) 313-346. | MR | Zbl
,[24] Some Random Series of Functions, 2nd edition. Cambridge University Press (1985). | MR | Zbl
,[25] Images of the Brownian sheet. Trans. Amer. Math. Soc. 359 (2007) 3125-3151. | MR | Zbl
and ,[26] Gaussian Random Functions. Kluwer Academic Publishers, Dordrecht (1995). | MR | Zbl
,[27] Evaluating the small deviation probabilities for subordinated Lévy processes. Stoch. Process. Appl. 113 (2004) 273-287. | MR | Zbl
and ,[28] Iterated Brownian motion in parabola-shaped domains. Potential Anal. 24 (2006) 105-123. | MR | Zbl
,[29] Iterated Brownian motion in bounded domains in ℝn. Stoch. Process. Appl. 116 (2006) 905-916. | MR | Zbl
,[30] Laws of the iterated logarithm for α-time Brownian motion. Electron. J. Probab. 11 (2006) 434-459. | EuDML | MR | Zbl
,[31] Higher order PDE's and iterated processes. Trans. Amer. Math. Soc. 360 (2008) 2681-2692. | MR | Zbl
,[32] Laws of the iterated logarithm for a class of iterated processes. Statist. Probab. Lett. 79 (2009) 1744-1751. | MR | Zbl
,[33] Fractional diffusion equations and processes with randomly varying time, Ann. Probab. 37 (2009) 206-249. | MR | Zbl
and ,[34] Local times for Gaussian vector fields. Indiana Univ. Math. J. 27 (1978) 309-330. | MR | Zbl
,[35] Stable non-Gaussian Random Processes : Stochastic models with infinite variance. Chapman & Hall, New York (1994). | MR | Zbl
and ,[36] K.I. Sato, Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press (1999). | MR | Zbl
[37] Asymptotic formulas for stable distribution laws. Selected Translations in Mathematical Statistics and Probability 1 (1961) 157-162; Dokl. Akad. Nauk. SSSR 98 (1954) 731-734. | MR | Zbl
,[38] Hausdorff measure of trajectories of multiparameter fractional Brownian motion. Ann. Probab. 23 (1995) 767-775. | MR | Zbl
,[39] Multiple points of trajectories of multiparameter fractional Brownian motion. Probab. Theory Relat. Fields 112 (1998) 545-563. | MR | Zbl
,[40] Weak Convergence to fractional Brownian motion and to the Rosenblatt process. Z. Wahrsch. Verw. Gebiete 31 (1975) 287-302. | MR | Zbl
,[41] Sample path properties of a transient stable process. J. Math. Mech. 16 (1967) 1229-1246. | MR | Zbl
,[42] Stochastic-Process Limits. Springer, New York (2002). | MR | Zbl
,[43] Hölder conditions for the local times and Hausdorff measure of the level sets of Gaussian random fields. Probab. Theory Relat. Fields 109 (1997) 129-157. | MR | Zbl
,[44] Local times and related properties of multi-dimensional iterated Brownian motion. J. Theoret. Probab. 11 (1998) 383-408. | MR | Zbl
,Cité par Sources :