(Local) self-similarity is a seminal concept, especially for Euclidean random fields. We study in this paper the extension of these notions to manifold indexed fields. We give conditions on the (local) self-similarity index that ensure the existence of fractional fields. Moreover, we explain how to identify the self-similar index. We describe a way of simulating Gaussian fractional fields.
Mots-clés : self-similarity, stochastic fields, manifold
@article{PS_2012__16__222_0, author = {Istas, Jacques}, title = {Manifold indexed fractional fields}, journal = {ESAIM: Probability and Statistics}, pages = {222--276}, publisher = {EDP-Sciences}, volume = {16}, year = {2012}, doi = {10.1051/ps/2011106}, mrnumber = {2956575}, zbl = {1275.60041}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ps/2011106/} }
Istas, Jacques. Manifold indexed fractional fields. ESAIM: Probability and Statistics, Tome 16 (2012), pp. 222-276. doi : 10.1051/ps/2011106. http://archive.numdam.org/articles/10.1051/ps/2011106/
[1] Wavelets, spectrum analysis and 1 / f processes. Lect. Note Stat. 103 (1995) 15-29. | Zbl
, and ,[2] The Multifractional Brownian motion. Stat. Inference Stoch. Process. 1 (2000) 7-18. | MR | Zbl
and ,[3] On the identification of the pointwise Hölder exponent of the generalized multifractional Brownian motion. Stoc. Proc. Appl. 111 (2004) 119-156. | MR | Zbl
and ,[4] A central limit theorem for the generalized quadratic variation of the step fractional Brownian. Stat. Inference Stoch. Process. 10 (2007) 1-27. | MR | Zbl
, and ,[5] Testing for the presence of self-similarity of Gaussian time series having stationary increments. J. Time Ser. Anal. 25 (2000) 497-515. | MR | Zbl
,[6] Identification of the multiscale fractional Brownian motion with biomechanical applications. J. Time Ser. Anal. 28 (2007) 1-52. | MR | Zbl
and ,[7] Kazhdan's Property (T). Cambridge University Press (2008). | MR | Zbl
, and ,[8] Gaussian processes and Pseudodifferential Elliptic operators. Revista Mathematica Iberoam. 13 (1997) 19-90. | EuDML | MR | Zbl
, and ,[9] Identifying the multifractional function of a Gaussian process. Stat. Probab. Lett. 39 (1998) 337-345. | MR | Zbl
, and ,[10] Identification of filtered white noises. Stoc. Proc. Appl. 75 (1998) 31-49. | MR | Zbl
, , and ,[11] Identification of the Hurst index of a step fractional Brownian motion. Stat. Inference Stoch. Process 3 (2000) 101-111. | MR | Zbl
, , and ,[12] Identification and properties of real harmonizable fractional Lévy motions. Bernoulli 8 (2002) 97-115. | MR | Zbl
, and ,[13] On roughness indices for fractional fields. Bernoulli 10 (2004) 357-373. | MR | Zbl
, and ,[14] Quadratic variations along irregular subdivisions for Gaussian processes. Electron. J. Probab. 10 (2005) 691-717. | EuDML | MR | Zbl
,[15] Asymptotic expansion and central limit theorem for quadratic variations of Gaussian processes. Bernoulli 13 (2007) 712-753. | MR | Zbl
,[16] Functional limit theorems for generalized quadratic variations of Gaussian processes. Stoc. Proc. Appl. 117 (2007) 1848-1869. | MR | Zbl
,[17] Estimating the Hurst parameter. Stat. Inference Stock. Process. 10 (2007) 49-73. | MR | Zbl
and ,[18] Anisotropic analysis of Gaussian models. J. Fourier Anal. Appl. 9 (2004) 215-236. | MR | Zbl
and ,[19] On the angular defect of triangulations and the pointwise approximation of curvatures, curves and surfaces'02. Comput. Aid. Geom. Des. 20 319-341. | MR | Zbl
, and ,[20] Lois stables et espaces Lp. Ann. Inst. Henri Poincaré 2 (1969) 231-259. | EuDML | Numdam | MR | Zbl
, and ,[21] On fractional Gaussian random fields simulation. J. Stat. Soft. 1 (2007) 1-23.
, and ,[22] On simulation of fractional Brownian motion indexed by a manifold. J. Stat. Soft. 36 (2010).
, and ,[23] Lévy's Brownian motion of several parameters and generalized white noise. Theory Probab. Appl. 2 (1957) 265-266.
,[24] Simulation and identification of the fractional Brownian motion : a bibliographical and comparative study. J. Stat. Software 5 (2000) 1-53.
,[25] Estimating the parameters of a fractional Brownian Motion by discrete variations of its sample paths. Stat. Inference Stoch. Process. 4 (2001) 199-227. | MR | Zbl
,[26] Identification of multifractional Brownian motion. Bernoulli 11 (2005) 987-1008. | MR | Zbl
,[27] Hurst exponent estimation of locally self-similar Gaussian processes using sample quantiles. Ann. Statist. 36 (2008) 1404-1434. | MR | Zbl
,[28] Cramer-Rao bounds for fractional Brownian motions. Stat. Probab. Lett. 53 (2001) 435-447. | MR | Zbl
and ,[29] From self-similarity to local self-similarity : the estimation problem. Fractal in Engineering, edited by J. Lévy-Vehel and C. Tricot. Springer Verlag, Delft (1999). | MR | Zbl
,[30] An universal estimator of local self-similarity. Preprint (2006).
and ,[31] Fractional fields : Modelling and statistical applications (Submitted).
and ,[32] Stationary Gaussian random fields on hyperbolic spaces and Euclidean spheres. To appear in ESAIM : PS. | EuDML | Numdam | MR | Zbl
and ,[33] Singularity functions for fractional processes : application to the fractional brownian sheet. Ann. Inst. Henri Poincaré 42 (2006) 187-205. | EuDML | Numdam | MR | Zbl
, , and ,[34] Probabilités et Statistiques tome 2. Masson, Paris (1983). | MR | Zbl
and ,[35] Efficient parameter estimation for self-similar processes. Ann. Statist. 17 (1989) 1749-1766. | MR | Zbl
,[36] Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41 (1988) 909-996. | MR | Zbl
,[37] Partial autocorrelation function of a nonstationary time series. J. Multiv. Anal. (2003) 46-59. | MR | Zbl
and ,[38] Automodel generalized random fields and their renorm group, in Multicomponent Random Systems, edited by R.L. Dobrushin and Ya. G. Sinai. Dekker, New York (1980) 153-198. | MR | Zbl
,[39] T-theory : An overview, Eur. J. Comb. 17 (1996) 161-175. | MR | Zbl
, and ,[40] Higher transcendental functions (Bateman manuscript project). McGraw-Hill 2 (1953) | MR | Zbl
, , and ,[41] Tangent fields and the local structure of random fields. J. Theor. Probab. 15 (2002) 731-750. | MR | Zbl
,[42] The local structure of random processes. J. Lond. Math. Soc. 67 (2003) 657-672. | MR | Zbl
,[43] Fonction brownienne sur une variété riemannienne. Séminaire de probabilités de Strasbourg 7 (1973) 61-76. | EuDML | Numdam | MR | Zbl
,[44] Distances hilbertiennes invariantes sur un espace homogène. Ann. Inst. Fourier 24 (1974) 171-217. | EuDML | Numdam | MR | Zbl
and ,[45] Riemannian Geometry, 2nd edition. Springer-Verlag (1993). | Zbl
, and ,[46] Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy's Brownian motion of several parameters. Ann. Inst. Henri Poincaré 3 (1967) 121-226. | EuDML | Numdam | MR | Zbl
,[47] Convergence en loi des H-variations d'un processus gaussien stationnaire. Ann. Inst. Henri Poincaré 25 (1989) 265-282. | EuDML | Numdam | MR | Zbl
and ,[48] Differential Geometry and Symmetric spaces. Academic Press (1962). | MR | Zbl
,[49] A set-indexed fractional Brownian motion. J. Theor. Probab. 19 (2006) 337-364. | MR | Zbl
and ,[50] Stationarity and self-similarity characterization of the set-indexed fractional Brownian motion. J. Theor. Probab. 22 (2009) 1010-1029. | MR | Zbl
and ,[51] Spherical and hyperbolic fractional Brownian motion. Electron. Comm. Probab. 10 (2005) 254-262. | EuDML | MR | Zbl
,[52] On fractional stable fields indexed by metric spaces. Electron. Comm. Probab. 11 (2006) 242-251. | EuDML | MR | Zbl
,[53] Karhunen-Loève expansion of spherical fractional Brownian motions. Stat. Probab. Lett. 76 (2006) 1578-1583. | MR | Zbl
,[54] Quadratic variations of spherical fractional Brownian motions, Stoc. Proc. Appl. 117 (2007) 476-486. | MR | Zbl
,[55] Identifying the anisotropical function of a d-dimensional Gaussian self-similar process with stationary increments. Stat. Inf. Stoc. Proc. 10-1 (2007) 97-106. | MR | Zbl
,[56] On locally self-similar fractional random fields indexed by a manifold. preprint. | MR | Zbl
and ,[57] Variations quadratiques et estimation de l'exposant de Hölder local d'un processus gaussien. C. R. Acad. Sci. Sér. I Paris 319 (1994) 201-206. | MR | Zbl
and ,[58] Quadratic variations and estimation of the Hölder index of a Gaussian process. Ann. Inst. Henri Poincaré 33 (1997) 407-436. | EuDML | Numdam | MR | Zbl
and ,[59] Estimating the fractal dimension of a locally self-similar Gaussian process using increments. J. Roy. Statist. Soc. B 59 (1997) 679-700. | MR | Zbl
and ,[60] Schoenberg's problem on positive definite functions. Algebra Anal. 3 (1991) 78-85. | MR | Zbl
,[61] A short proof of Schoenberg's conjecture on positive definite functions. Bull. Lond. Math. Soc. (1999) 693-699. | MR | Zbl
and ,[62] Wienersche Spiralen und einige andere interessante Kurven im Hilbertsche Raum (German). C. R. (Dokl.) Acad. Sci. URSS 26 (1940) 115-118. | MR | Zbl
,[63] Real harmonizable multifractional Lévy motions. Ann. Inst. Henri Poincaré 40 (2004) 259-277. | EuDML | Numdam | MR | Zbl
,[64] Semi-parametric estimation of the Hölder exponent of a stationary Gaussian process with minimax rates. Stat. Inf. Stoc. Proc. 4-3 (2001) 283-306. | MR | Zbl
and ,[65] Processus stochastiques et mouvement Brownien. Gauthier-Vilars (1965). | Zbl
,[66] Fractional Brownian fields as integrals of white noise. Bull. Lond. Math. Soc. 25 (1993) 83-88. | MR | Zbl
,[67] A remark on self-similar processes with stationary increments. Can. J. Stat. 14 (1986) 81-82. | MR | Zbl
,[68] Fractional Brownian motions, fractional noises and applications, SIAM Rev. 10 (1968) 422-437. | MR | Zbl
and ,[69] Multifractional Brownian motion : definition and preliminary results. Rapport de recherche de l'INRIA 2645 (1996).
and ,[70] Riemannian Geometry. Graduate Texts in Mathematics, Springer (1998). | MR | Zbl
,[71] Testing (non-)existence of input-output relationships by estimating fractal dimensions. IEEE Trans. Signal Process. 52 (2004) 3151-3159. | MR
,[72] Crofton formulae and geodesic distance in hyperbolic spaces. J. Lie Theory 8 (1998) 163-172. | EuDML | MR | Zbl
,[73] Negative definite kernels and a dynamical characterization of property T for countable groups. Ergod. Theory Dyn. Syst. 18 (1998) 247-253. | MR | Zbl
and ,[74] Fourier analysis on groups. Wiley (1962). | MR | Zbl
,[75] Long memory and self-similar processes. Annales de la Faculté des Sciences Toulouse 15 (2006) 107-123. | EuDML | Numdam | MR | Zbl
,[76] Stable non-Gaussian random processes : stochastic models with infinite variance. Chapman & Hall, New York (1994). | MR | Zbl
and ,[77] Metric spaces and positive definite functions. Ann. Math. 39 (1938) 811-841. | JFM | Zbl
,[78] Spherical harmonics. Am. Math. Mon. 73 (1966) 115-121. | MR | Zbl
,[79] Stochastic properties of the linear multifractional stable motion. Adv. Appl. Prob. 36 (2004) 1085-1115. | MR | Zbl
and ,[80] Orthogonal Polynomials, 4th edition, in Amer. Math. Soc. Providence, RI (1975). | MR
,[81] Integral-geometric construction of self-similar stable processes. Nagoya Math. J. 123 (1991) 1-12. | MR | Zbl
,[82] Brownian motion parametrized with metric space of constant curvature. Nagoya Math. J. 82 (1981) 131-140. | MR | Zbl
, and ,[83] Les représentations uniformément bornées associées à un arbre réel. Bull. Soc. Math. Belgique 42 (1990) 747-760. | MR | Zbl
,[84] Two-point homogeneous spaces. Ann. Math. 2 (1952) 177-191. | MR | Zbl
,[85] Some classes of random fields in n-dimensional space, related to stationary random processes. Theory Probab. Appl. 2 (1957) 273-320.
,[86] Linear Anal. North Holland Publishing Co (1960).
,Cité par Sources :