In this note we prove that the local martingale part of a convex function of a -dimensional semimartingale can be written in terms of an Itô stochastic integral , where is some particular measurable choice of subgradient of at , and is the martingale part of . This result was first proved by Bouleau in [N. Bouleau, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981) 87-90]. Here we present a new treatment of the problem. We first prove the result for , where is a standard Brownian motion, and then pass to the limit as , using results in [M.T. Barlow and P. Protter, On convergence of semimartingales. In Séminaire de Probabilités, XXIV, 1988/89, Lect. Notes Math., vol. 1426. Springer, Berlin (1990) 188-193; E. Carlen and P. Protter, Illinois J. Math. 36 (1992) 420-427]. The former paper concerns convergence of semimartingale decompositions of semimartingales, while the latter studies a special case of converging convex functions of semimartingales.
Mots clés : Itô's lemma, continuous semimartingales, convex functions
@article{PS_2013__17__293_0, author = {Grinberg, Nastasiya F.}, title = {Semimartingale decomposition of convex functions of continuous semimartingales by brownian perturbation}, journal = {ESAIM: Probability and Statistics}, pages = {293--306}, publisher = {EDP-Sciences}, volume = {17}, year = {2013}, doi = {10.1051/ps/2011146}, mrnumber = {3066381}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ps/2011146/} }
TY - JOUR AU - Grinberg, Nastasiya F. TI - Semimartingale decomposition of convex functions of continuous semimartingales by brownian perturbation JO - ESAIM: Probability and Statistics PY - 2013 SP - 293 EP - 306 VL - 17 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ps/2011146/ DO - 10.1051/ps/2011146 LA - en ID - PS_2013__17__293_0 ER -
%0 Journal Article %A Grinberg, Nastasiya F. %T Semimartingale decomposition of convex functions of continuous semimartingales by brownian perturbation %J ESAIM: Probability and Statistics %D 2013 %P 293-306 %V 17 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ps/2011146/ %R 10.1051/ps/2011146 %G en %F PS_2013__17__293_0
Grinberg, Nastasiya F. Semimartingale decomposition of convex functions of continuous semimartingales by brownian perturbation. ESAIM: Probability and Statistics, Tome 17 (2013), pp. 293-306. doi : 10.1051/ps/2011146. http://archive.numdam.org/articles/10.1051/ps/2011146/
[1] On convergence of semimartingales. In Séminaire de Probabilités, XXIV, 1988/89, Lect. Notes Math., vol. 1426. Springer, Berlin (1990) 188-193. | Numdam | MR | Zbl
and ,[2] Semi-martingales à valeurs Rd et fonctions convexes. C. R. Acad. Sci. Paris Sér. I Math. 292 (1981) 87-90. | MR | Zbl
,[3] Formules de changement de variables. Ann. Inst. Henri Poincaré Probab. Statist. 20 (1984) 133-145. | Numdam | MR | Zbl
,[4] On semimartingale decompositions of convex functions of semimartingales. Illinois J. Math. 36 (1992) 420-427. | MR | Zbl
and ,[5] The radial part of Brownian motion. II. Its life and times on the cut locus. Probab. Theory Relat. Fields 96 (1993) 353-368. | MR | Zbl
, and ,[6] On Itô's formula for multidimensional Brownian motion. Probab. Theory Relat. Fields 116 (2000) 1-20. | MR | Zbl
and ,[7] Quadratic covariation and an extension of Itô's formula. Bernoulli 1 (1995) 149-169. | MR | Zbl
, and ,[8] Generalized directional gradients, backward stochastic differential equations and mild solutions of semilinear parabolic equations. Appl. Math. Optim. 51 (2005) 279-332. | MR | Zbl
and ,[9] Convex analysis with application in the differentiation of convex functions, Research Notes Math., vol. 58. Pitman (Advanced Publishing Program), Boston, Mass (1982). | MR | Zbl
,[10] The radial part of Brownian motion on a manifold: a semimartingale property. Ann. Probab. 15 (1987) 1491-1500. | MR | Zbl
,[11] Un cours sur les intégrales stochastiques. In Séminaire de Probabilités, X (Seconde partie: Théorie des intégrales stochastiques, Univ. Strasbourg, Strasbourg, année universitaire 1974/1975), Lecture Notes Math., vol. 511. Springer, Berlin (1976) 245-400. | Numdam | MR | Zbl
,[12] Continuous martingales and Brownian motion, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293, 3th edition. Springer-Verlag, Berlin (1999). | MR | Zbl
and ,[13] Convex analysis. Princeton Mathematical Series, No. 28. Princeton University Press, Princeton, N.J. (1970). | MR | Zbl
,[14] The generalized covariation process and Itô formula. Stochastic Process. Appl. 59 (1995) 81-104. | MR | Zbl
and ,[15] Itô formula for C1-functions of semimartingales. Probab. Theory Relat. Fields 104 (1996) 27-41. | MR | Zbl
and ,Cité par Sources :