We investigate here the central limit theorem of the increment ratio statistic of a multifractional Brownian motion, leading to a CLT for the time varying Hurst index. The proofs are quite simple relying on Breuer-Major theorems and an original freezing of time strategy. A simulation study shows the goodness of fit of this estimator.
Keywords: increment ratio statistic, fractional brownian motion, local estimation, multifractional brownian motion, wavelet series representation
@article{PS_2013__17__307_0, author = {Bertrand, Pierre Rapha\"el and Fhima, Mehdi and Guillin, Arnaud}, title = {Local estimation of the {Hurst} index of multifractional brownian motion by increment ratio statistic method}, journal = {ESAIM: Probability and Statistics}, pages = {307--327}, publisher = {EDP-Sciences}, volume = {17}, year = {2013}, doi = {10.1051/ps/2011154}, mrnumber = {3066382}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ps/2011154/} }
TY - JOUR AU - Bertrand, Pierre Raphaël AU - Fhima, Mehdi AU - Guillin, Arnaud TI - Local estimation of the Hurst index of multifractional brownian motion by increment ratio statistic method JO - ESAIM: Probability and Statistics PY - 2013 SP - 307 EP - 327 VL - 17 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ps/2011154/ DO - 10.1051/ps/2011154 LA - en ID - PS_2013__17__307_0 ER -
%0 Journal Article %A Bertrand, Pierre Raphaël %A Fhima, Mehdi %A Guillin, Arnaud %T Local estimation of the Hurst index of multifractional brownian motion by increment ratio statistic method %J ESAIM: Probability and Statistics %D 2013 %P 307-327 %V 17 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ps/2011154/ %R 10.1051/ps/2011154 %G en %F PS_2013__17__307_0
Bertrand, Pierre Raphaël; Fhima, Mehdi; Guillin, Arnaud. Local estimation of the Hurst index of multifractional brownian motion by increment ratio statistic method. ESAIM: Probability and Statistics, Volume 17 (2013), pp. 307-327. doi : 10.1051/ps/2011154. http://archive.numdam.org/articles/10.1051/ps/2011154/
[1] Self-similarity and long-range dependence through the wavelet lens, in Theory and applications of long-range dependenc. Birkhauser, Boston (2003). | MR | Zbl
, , and ,[2] Limit theorems for nonlinear functionals of a stationary Gaussian sequence of vectors. Ann. Probab. 22 (1994) 2242-2274. | MR | Zbl
,[3] Rate optimality of wavelet series approximations of fractional Brownian motions. J. Fourier Anal. Appl. 9 (2003) 451-471. | MR | Zbl
and ,[4] Multifractional process with random exponent. Publ. Math. 49 (2005) 459-486. | EuDML | MR | Zbl
and ,[5] A central limit theorem for the generalized quadratic variation of the step fractional Brownian motion. Stat. Inference Stoch. Process. 10 (2007) 1-27. | MR | Zbl
, and ,[6] Definition, properties and wavelet analysis of multiscale fractional Brownian motions. Fractals 15 (2007) 73-87. | MR | Zbl
and ,[7] Identification of the multiscale fractional Brownian motion with biomechanical applications. J. Time Ser. Anal. 28 (2007) 1-52. | MR | Zbl
and ,[8] A nonparametric estimator of the spectral density of a continuous-time Gaussian process observed at random times. Scand. J. Stat. 37 (2010) 458-476. | MR | Zbl
and ,[9] Nonparametric estimation of the local hurst function of multifractional Gaussian processes, Stoch. Proc. Appl. 123 (2013) 1004-1045. | MR | Zbl
and ,[10] Measuring roughness of random paths by increment ratios. Bernoulli 17 (2011) 749-780. | MR | Zbl
and ,[11] Functional limit theorems for generalized quadratic variations of Gaussian processes. Stoch. Proc. Appl. 117 (2007) 1848-1869. | MR | Zbl
,[12] Gaussian processes and pseudodifferential elliptic operators. Rev. Mat. Iberoam. 13 (1997) 19-81. | MR
, and ,[13] Identifying the multifractional function of a Gaussian process. Stat. Probab. Lett. 39 (1998) 337-345. | MR | Zbl
, and ,[14] Modelling NASDAQ series by sparse multifractional Brownian motion. Method. Comput. Appl. Probab. 14 (2012) 107-124. | MR | Zbl
, and ,[15] Central limit theorems and quadratic variations in terms of spectral density. Electronic Journal of Probability 16 (2011) 362-395. | MR | Zbl
, and ,[16] Pa. Billingsley, Probability and measure, 2nd edition. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons Inc., New York (1986). | MR | Zbl
[17] The increment ratio statistic under deterministic trends. Lith. Math. J. 48 (2008) 256-269.
and ,[18] Simulation of multifractal Brownian motions, Proc. of Computational Statistics (1998) 233-238. | Zbl
and ,[19] Arbitrage in fractional Brownian motion models. Finance Stoch. 7 (2003) 533-553. | MR | Zbl
,[20] Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths. Stat. Inference Stoch. Process. 4 (2001) 199-227. | MR | Zbl
,[21] Identification of multifractional Brownian motions. Bernoulli 11 (2005) 987-1008. | MR | Zbl
,[22] From self-similarity to local self-similarity: the estimation problem, Fractal: Theory and Applications in Engineering, edited by M. Dekking, J. Lévy Véhel, E. Lutton and C. Tricot. Springer Verlag (1999). | MR | Zbl
,[23] Stationary and Related Stochastic Processes. Sample Function Properties and Their Applications, Wiley and Sons, London (1967). | MR | Zbl
and ,[24] Ph.D. thesis (2011) in preparation.
,[25] Convergence en loi des h-variations d'un processus Gaussien stationnaire. Ann. Inst. Henri Poincaré 25 (1989) 265-282. | Numdam | MR | Zbl
and ,[26] Quadratic variations and estimation of the hölder index of a Gaussian process. Ann. Inst. Henri Poincaré 33 (1997) 407-436. | Numdam | MR | Zbl
and ,[27] Wienersche spiralen und einige andere interessante kurven im hilbertschen raum. C.R. (Doklady) Acad. URSS (N.S.) 26 (1940) 115-118. | JFM | MR
,[28] Multifractional Brownian motion: definition and preliminary results. Techn. Report RR-2645, INRIA (1996).
and ,[29] Fractional Brownian motions, fractional noises and applications. SIAM Review 10 (1968) 422-437. | MR | Zbl
and ,[30] Wavelets, generalized white noise and fractional integration: the synthesis of fractional Brownian motions. J. Fourier Anal. Appl. 5 (1999) 465-494. | MR | Zbl
, and ,[31] Stein's method on wiener chaos. Probab. Theory Relat. Fields 145 (2009) 75-118. | MR | Zbl
and ,[32] Quantitative Breuer-Major theorems, HAL: hal-00484096, version 2 (2010). | MR | Zbl
, and ,[33] Gaussian limits for vector-valued multiple stochastic integrals. Séminaire de Probabilités XXXVIII, Lecture Notes Math. 1857 (2005) 247-262. | MR | Zbl
and ,[34] Stable non-Gaussian random processes. Chapman & Hall (1994). | MR | Zbl
and ,[35] How rich is the class of multifractional brownian motions. Stoch. Proc. Appl. 116 (2006) 200-221. | MR | Zbl
and ,[36] Numerical approximation of some infinite Gaussian series and integrals. Nonlinear Anal.: Modelling and Control 13 (2008) 397-415. | MR | Zbl
and ,[37] The increment ratio statistic. J. Multivar. Anal. 99 (2008) 510-541. | MR | Zbl
, and ,[38] Some classes of random fields in n-dimensional space, related to stationary random processes. Theory Probab. Appl. 2 (1957) 273-320.
,Cited by Sources: