Local estimation of the Hurst index of multifractional brownian motion by increment ratio statistic method
ESAIM: Probability and Statistics, Volume 17 (2013), pp. 307-327.

We investigate here the central limit theorem of the increment ratio statistic of a multifractional Brownian motion, leading to a CLT for the time varying Hurst index. The proofs are quite simple relying on Breuer-Major theorems and an original freezing of time strategy. A simulation study shows the goodness of fit of this estimator.

DOI: 10.1051/ps/2011154
Classification: 60G22, 662M09
Keywords: increment ratio statistic, fractional brownian motion, local estimation, multifractional brownian motion, wavelet series representation
@article{PS_2013__17__307_0,
     author = {Bertrand, Pierre Rapha\"el and Fhima, Mehdi and Guillin, Arnaud},
     title = {Local estimation of the {Hurst} index of multifractional brownian motion by increment ratio statistic method},
     journal = {ESAIM: Probability and Statistics},
     pages = {307--327},
     publisher = {EDP-Sciences},
     volume = {17},
     year = {2013},
     doi = {10.1051/ps/2011154},
     mrnumber = {3066382},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ps/2011154/}
}
TY  - JOUR
AU  - Bertrand, Pierre Raphaël
AU  - Fhima, Mehdi
AU  - Guillin, Arnaud
TI  - Local estimation of the Hurst index of multifractional brownian motion by increment ratio statistic method
JO  - ESAIM: Probability and Statistics
PY  - 2013
SP  - 307
EP  - 327
VL  - 17
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ps/2011154/
DO  - 10.1051/ps/2011154
LA  - en
ID  - PS_2013__17__307_0
ER  - 
%0 Journal Article
%A Bertrand, Pierre Raphaël
%A Fhima, Mehdi
%A Guillin, Arnaud
%T Local estimation of the Hurst index of multifractional brownian motion by increment ratio statistic method
%J ESAIM: Probability and Statistics
%D 2013
%P 307-327
%V 17
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ps/2011154/
%R 10.1051/ps/2011154
%G en
%F PS_2013__17__307_0
Bertrand, Pierre Raphaël; Fhima, Mehdi; Guillin, Arnaud. Local estimation of the Hurst index of multifractional brownian motion by increment ratio statistic method. ESAIM: Probability and Statistics, Volume 17 (2013), pp. 307-327. doi : 10.1051/ps/2011154. http://archive.numdam.org/articles/10.1051/ps/2011154/

[1] P. Abry, P. Flandrin, M.S. Taqqu and D. Veitch, Self-similarity and long-range dependence through the wavelet lens, in Theory and applications of long-range dependenc. Birkhauser, Boston (2003). | MR | Zbl

[2] M.A. Arcones, Limit theorems for nonlinear functionals of a stationary Gaussian sequence of vectors. Ann. Probab. 22 (1994) 2242-2274. | MR | Zbl

[3] A. Ayache and M.S. Taqqu, Rate optimality of wavelet series approximations of fractional Brownian motions. J. Fourier Anal. Appl. 9 (2003) 451-471. | MR | Zbl

[4] A. Ayache and M.S. Taqqu, Multifractional process with random exponent. Publ. Math. 49 (2005) 459-486. | EuDML | MR | Zbl

[5] A. Ayache, P. Bertrand and J. Lévy-Véhel, A central limit theorem for the generalized quadratic variation of the step fractional Brownian motion. Stat. Inference Stoch. Process. 10 (2007) 1-27. | MR | Zbl

[6] J.M. Bardet and P.R. Bertrand, Definition, properties and wavelet analysis of multiscale fractional Brownian motions. Fractals 15 (2007) 73-87. | MR | Zbl

[7] J.M. Bardet and P.R. Bertrand, Identification of the multiscale fractional Brownian motion with biomechanical applications. J. Time Ser. Anal. 28 (2007) 1-52. | MR | Zbl

[8] J.M. Bardet and P.R. Bertrand, A nonparametric estimator of the spectral density of a continuous-time Gaussian process observed at random times. Scand. J. Stat. 37 (2010) 458-476. | MR | Zbl

[9] J.M. Bardet and D. Surgailis, Nonparametric estimation of the local hurst function of multifractional Gaussian processes, Stoch. Proc. Appl. 123 (2013) 1004-1045. | MR | Zbl

[10] J.M. Bardet and D. Surgailis, Measuring roughness of random paths by increment ratios. Bernoulli 17 (2011) 749-780. | MR | Zbl

[11] A. Bégyn, Functional limit theorems for generalized quadratic variations of Gaussian processes. Stoch. Proc. Appl. 117 (2007) 1848-1869. | MR | Zbl

[12] A. Benassi, S. Jaffard and D. Roux, Gaussian processes and pseudodifferential elliptic operators. Rev. Mat. Iberoam. 13 (1997) 19-81. | MR

[13] A. Benassi, S. Cohen and J. Istas, Identifying the multifractional function of a Gaussian process. Stat. Probab. Lett. 39 (1998) 337-345. | MR | Zbl

[14] P.R. Bertrand, A. Hamdouni and S. Khadhraoui, Modelling NASDAQ series by sparse multifractional Brownian motion. Method. Comput. Appl. Probab. 14 (2012) 107-124. | MR | Zbl

[15] H. Biermé, A. Bonami and J. Leon, Central limit theorems and quadratic variations in terms of spectral density. Electronic Journal of Probability 16 (2011) 362-395. | MR | Zbl

[16] Pa. Billingsley, Probability and measure, 2nd edition. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons Inc., New York (1986). | MR | Zbl

[17] K. Bružaitė and M. Vaičiulis, The increment ratio statistic under deterministic trends. Lith. Math. J. 48 (2008) 256-269.

[18] G. Chan and A.T.A. Wood, Simulation of multifractal Brownian motions, Proc. of Computational Statistics (1998) 233-238. | Zbl

[19] P. Cheridito, Arbitrage in fractional Brownian motion models. Finance Stoch. 7 (2003) 533-553. | MR | Zbl

[20] J.F. Coeurjolly, Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths. Stat. Inference Stoch. Process. 4 (2001) 199-227. | MR | Zbl

[21] J.-F. Coeurjolly, Identification of multifractional Brownian motions. Bernoulli 11 (2005) 987-1008. | MR | Zbl

[22] S. Cohen, From self-similarity to local self-similarity: the estimation problem, Fractal: Theory and Applications in Engineering, edited by M. Dekking, J. Lévy Véhel, E. Lutton and C. Tricot. Springer Verlag (1999). | MR | Zbl

[23] H. Cramèr and M.R. Leadbetter, Stationary and Related Stochastic Processes. Sample Function Properties and Their Applications, Wiley and Sons, London (1967). | MR | Zbl

[24] M. Fhima, Ph.D. thesis (2011) in preparation.

[25] X. Guyon and J. Leon, Convergence en loi des h-variations d'un processus Gaussien stationnaire. Ann. Inst. Henri Poincaré 25 (1989) 265-282. | Numdam | MR | Zbl

[26] J. Istas and G. Lang, Quadratic variations and estimation of the hölder index of a Gaussian process. Ann. Inst. Henri Poincaré 33 (1997) 407-436. | Numdam | MR | Zbl

[27] A.N. Kolmogorov, Wienersche spiralen und einige andere interessante kurven im hilbertschen raum. C.R. (Doklady) Acad. URSS (N.S.) 26 (1940) 115-118. | JFM | MR

[28] J. Lévy-Véhel and R.F. Peltier, Multifractional Brownian motion: definition and preliminary results. Techn. Report RR-2645, INRIA (1996).

[29] B. Mandelbrot and J. Van Ness, Fractional Brownian motions, fractional noises and applications. SIAM Review 10 (1968) 422-437. | MR | Zbl

[30] Y. Meyer, F. Sellan and M.S. Taqqu, Wavelets, generalized white noise and fractional integration: the synthesis of fractional Brownian motions. J. Fourier Anal. Appl. 5 (1999) 465-494. | MR | Zbl

[31] I. Nourdin and G. Peccati, Stein's method on wiener chaos. Probab. Theory Relat. Fields 145 (2009) 75-118. | MR | Zbl

[32] I. Nourdin, G. Peccati and M. Podolskij, Quantitative Breuer-Major theorems, HAL: hal-00484096, version 2 (2010). | MR | Zbl

[33] G. Peccati and C.A. Tudor, Gaussian limits for vector-valued multiple stochastic integrals. Séminaire de Probabilités XXXVIII, Lecture Notes Math. 1857 (2005) 247-262. | MR | Zbl

[34] G. Samorodnitsky and M.S. Taqqu, Stable non-Gaussian random processes. Chapman & Hall (1994). | MR | Zbl

[35] A.S. Stoev and M.S. Taqqu, How rich is the class of multifractional brownian motions. Stoch. Proc. Appl. 116 (2006) 200-221. | MR | Zbl

[36] M. Stoncelis and M. Vaičiulis, Numerical approximation of some infinite Gaussian series and integrals. Nonlinear Anal.: Modelling and Control 13 (2008) 397-415. | MR | Zbl

[37] D. Surgailis, G. Teyssière and M. Vaičiulis, The increment ratio statistic. J. Multivar. Anal. 99 (2008) 510-541. | MR | Zbl

[38] A.M. Yaglom, Some classes of random fields in n-dimensional space, related to stationary random processes. Theory Probab. Appl. 2 (1957) 273-320.

Cited by Sources: