Consider a strong Markov process in continuous time, taking values in some Polish state space. Recently, Douc et al. [Stoc. Proc. Appl. 119, (2009) 897-923] introduced verifiable conditions in terms of a supermartingale property implying an explicit control of modulated moments of hitting times. We show how this control can be translated into a control of polynomial moments of abstract regeneration times which are obtained by using the regeneration method of Nummelin, extended to the time-continuous context. As a consequence, if a p-th moment of the regeneration times exists, we obtain non asymptotic deviation bounds of the form
Mots clés : Harris recurrence, polynomial ergodicity, Nummelin splitting, continuous time Markov processes, drift condition, modulated moment
@article{PS_2013__17__195_0, author = {L\"ocherbach, Eva and Loukianova, Dasha}, title = {Polynomial deviation bounds for recurrent {Harris} processes having general state space}, journal = {ESAIM: Probability and Statistics}, pages = {195--218}, publisher = {EDP-Sciences}, volume = {17}, year = {2013}, doi = {10.1051/ps/2011156}, mrnumber = {3021315}, zbl = {1296.60199}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ps/2011156/} }
TY - JOUR AU - Löcherbach, Eva AU - Loukianova, Dasha TI - Polynomial deviation bounds for recurrent Harris processes having general state space JO - ESAIM: Probability and Statistics PY - 2013 SP - 195 EP - 218 VL - 17 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ps/2011156/ DO - 10.1051/ps/2011156 LA - en ID - PS_2013__17__195_0 ER -
%0 Journal Article %A Löcherbach, Eva %A Loukianova, Dasha %T Polynomial deviation bounds for recurrent Harris processes having general state space %J ESAIM: Probability and Statistics %D 2013 %P 195-218 %V 17 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ps/2011156/ %R 10.1051/ps/2011156 %G en %F PS_2013__17__195_0
Löcherbach, Eva; Loukianova, Dasha. Polynomial deviation bounds for recurrent Harris processes having general state space. ESAIM: Probability and Statistics, Tome 17 (2013), pp. 195-218. doi : 10.1051/ps/2011156. http://archive.numdam.org/articles/10.1051/ps/2011156/
[1] A tail inequality for suprema of unbounded empirical processes with applications to Markov chains. Electron. J. Probab. 13 (2008) 1000-1034. | MR | Zbl
,[2] A new approach to the limit theory of recurrent Markov chains. Trans. Amer. Math. Soc. 245 (1978) 493-501. | MR | Zbl
and ,[3] Sharp bounds for the tails of functionals of markov chains, Teor. Veroyatnost. i Primenen 54 (2009) 609-619. | MR | Zbl
and ,[4] Deviation bounds for additive functionals of Markov processes. ESAIM : PS 12 (2008) 12-29. | Numdam | MR | Zbl
and ,[5] Concentration inequalities for random fields via coupling. Probab. Theory Relat. Fields 137 (2007) 201-225. | MR | Zbl
, , and ,[6] Moment and probability inequalities for sums of bounded additive functionals of regular Markov chains via the Nummelin splitting technique. Stat. Probab. Lett. 55 (2001) 227-238. | MR | Zbl
,[7] Subgeometric rates of convergence of f-ergodic strong Markov processes. Stoch. Proc. Appl. 119 (2009) 897-923. | MR | Zbl
, and ,[8] Practical drift conditions for subgeometric rates of convergence. Ann. Appl. Probab. 14 (2004) 1353-1377. | MR | Zbl
, , and ,[9] Subgeometric ergodicity of strong Markov processes. Ann. Appl. Probab. 15 (2005) 1565-1589. | MR | Zbl
and ,[10] Transportation-information inequalities for Markov processes. Probab. Theory Relat. Fields 144 (2009) 669-695. | MR | Zbl
, , and ,[11] Exponential ergodicity of the solutions to SDE's with a jump noise. Stoch. Proc. Appl. 119 (2009) 602-632. | MR | Zbl
,[12] Applications of the Malliavin calculus. III. J. Fac. Sci., Univ. Tokyo, Sect. I A 34 (1987) 391-442. | MR | Zbl
and ,[13] Limit theorems for null recurrent Markov processes. Memoirs AMS 161 (2003). | Zbl
and ,[14] Chernoff and Berry-Esséen inequalities for Markov processes. ESAIM : PS 5 (2001) 183-201. | Numdam | MR | Zbl
,[15] On Nummelin splitting for continuous time Harris recurrent Markov processes and application to kernel estimation for multi-dimensional diffusions. Stoch. Proc. Appl. 118 (2008) 1301-1321. | MR | Zbl
and ,[16] Deviation bounds in ergodic theorem for positively recurrent one-dimensional diffusions and integrability of hitting times. Ann. Inst. Henri Poincaré 47 (2011) 425-449. | Numdam | Zbl
, and ,[17] A splitting technique for Harris recurrent Markov chains. Z. Wahrscheinlichkeitstheorie Verw. Geb. 43 (1978) 309-318. | MR | Zbl
,[18] Concentration for multidimensional diffusions and their boundary local times. To appear in Probab. Theory Relat. Fields (2011), DOI 10.1007/s00440-011-0368-1 | MR | Zbl
,[19] Markov chains, Revised edition. Amsterdam, North Holland (1984). | MR | Zbl
,[20] Théorie asymptotique des processus aléatoires faiblement dépendants. Springer. Math. Appl. 31 (2000). | MR | Zbl
,[21] Support theorem for jump processes. Stoch. Proc. Appl. 89 (2000) 1-30. | MR | Zbl
,[22] On polynomial mixing bounds for stochastic differential equations. Stoch. Proc. Appl. 70 (1997) 115-127. | MR | Zbl
,[23] On subexponential mixing rate for Markov processes. Teor. Veroyatnost. i Primenen 49 (2004) 21-35. | MR | Zbl
and ,[24] A deviation inequality for non-reversible Markov process, Ann. Inst. Henri Poincaré 36 (2000) 435-445. | Numdam | MR | Zbl
,Cité par Sources :