Polynomial deviation bounds for recurrent Harris processes having general state space
ESAIM: Probability and Statistics, Tome 17 (2013), pp. 195-218.

Consider a strong Markov process in continuous time, taking values in some Polish state space. Recently, Douc et al. [Stoc. Proc. Appl. 119, (2009) 897-923] introduced verifiable conditions in terms of a supermartingale property implying an explicit control of modulated moments of hitting times. We show how this control can be translated into a control of polynomial moments of abstract regeneration times which are obtained by using the regeneration method of Nummelin, extended to the time-continuous context. As a consequence, if a p-th moment of the regeneration times exists, we obtain non asymptotic deviation bounds of the form

P ν 1 t 0 t f(X s )ds-μ(f)K(p)1 t p-1 1 2(p-1) f 2(p-1) ,p2.
P ν 1 t ∫ 0 t f ( X s ) d s - μ ( f ) ≥ ε ≤ K ( p ) 1 t p - 1 1 ε 2 ( p - 1 ) ∥ f ∥ ∞ 2 ( p - 1 ) , p ≥ 2. Here, f is a bounded function and μ is the invariant measure of the process. We give several examples, including elliptic stochastic differential equations and stochastic differential equations driven by a jump noise.

DOI : 10.1051/ps/2011156
Classification : 60J55, 60J35, 60F10, 62M05
Mots-clés : Harris recurrence, polynomial ergodicity, Nummelin splitting, continuous time Markov processes, drift condition, modulated moment
@article{PS_2013__17__195_0,
     author = {L\"ocherbach, Eva and Loukianova, Dasha},
     title = {Polynomial deviation bounds for recurrent {Harris} processes having general state space},
     journal = {ESAIM: Probability and Statistics},
     pages = {195--218},
     publisher = {EDP-Sciences},
     volume = {17},
     year = {2013},
     doi = {10.1051/ps/2011156},
     mrnumber = {3021315},
     zbl = {1296.60199},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ps/2011156/}
}
TY  - JOUR
AU  - Löcherbach, Eva
AU  - Loukianova, Dasha
TI  - Polynomial deviation bounds for recurrent Harris processes having general state space
JO  - ESAIM: Probability and Statistics
PY  - 2013
SP  - 195
EP  - 218
VL  - 17
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ps/2011156/
DO  - 10.1051/ps/2011156
LA  - en
ID  - PS_2013__17__195_0
ER  - 
%0 Journal Article
%A Löcherbach, Eva
%A Loukianova, Dasha
%T Polynomial deviation bounds for recurrent Harris processes having general state space
%J ESAIM: Probability and Statistics
%D 2013
%P 195-218
%V 17
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ps/2011156/
%R 10.1051/ps/2011156
%G en
%F PS_2013__17__195_0
Löcherbach, Eva; Loukianova, Dasha. Polynomial deviation bounds for recurrent Harris processes having general state space. ESAIM: Probability and Statistics, Tome 17 (2013), pp. 195-218. doi : 10.1051/ps/2011156. http://archive.numdam.org/articles/10.1051/ps/2011156/

[1] R. Adamczak, A tail inequality for suprema of unbounded empirical processes with applications to Markov chains. Electron. J. Probab. 13 (2008) 1000-1034. | MR | Zbl

[2] K.B. Athreya and P. Ney, A new approach to the limit theory of recurrent Markov chains. Trans. Amer. Math. Soc. 245 (1978) 493-501. | MR | Zbl

[3] P. Bertail and S. Clémençon, Sharp bounds for the tails of functionals of markov chains, Teor. Veroyatnost. i Primenen 54 (2009) 609-619. | MR | Zbl

[4] P. Cattiaux and A. Guillin, Deviation bounds for additive functionals of Markov processes. ESAIM : PS 12 (2008) 12-29. | Numdam | MR | Zbl

[5] J.-R. Chazottes, P. Collet, C. Külske and F. Redig, Concentration inequalities for random fields via coupling. Probab. Theory Relat. Fields 137 (2007) 201-225. | MR | Zbl

[6] S. Clémençon, Moment and probability inequalities for sums of bounded additive functionals of regular Markov chains via the Nummelin splitting technique. Stat. Probab. Lett. 55 (2001) 227-238. | MR | Zbl

[7] R. Douc, G. Fort and A. Guillin, Subgeometric rates of convergence of f-ergodic strong Markov processes. Stoch. Proc. Appl. 119 (2009) 897-923. | MR | Zbl

[8] R. Douc, G. Fort, E. Moulines and P. Soulier, Practical drift conditions for subgeometric rates of convergence. Ann. Appl. Probab. 14 (2004) 1353-1377. | MR | Zbl

[9] G. Fort and G.O. Roberts, Subgeometric ergodicity of strong Markov processes. Ann. Appl. Probab. 15 (2005) 1565-1589. | MR | Zbl

[10] A. Guillin, C. Léonard, L. Wu and N. Yao, Transportation-information inequalities for Markov processes. Probab. Theory Relat. Fields 144 (2009) 669-695. | MR | Zbl

[11] A.M. Kulik, Exponential ergodicity of the solutions to SDE's with a jump noise. Stoch. Proc. Appl. 119 (2009) 602-632. | MR | Zbl

[12] S. Kusuoka and D. Stroock, Applications of the Malliavin calculus. III. J. Fac. Sci., Univ. Tokyo, Sect. I A 34 (1987) 391-442. | MR | Zbl

[13] R. Höpfner and E. Löcherbach, Limit theorems for null recurrent Markov processes. Memoirs AMS 161 (2003). | Zbl

[14] P. Lezaud, Chernoff and Berry-Esséen inequalities for Markov processes. ESAIM : PS 5 (2001) 183-201. | Numdam | MR | Zbl

[15] E. Löcherbach and D. Loukianova, On Nummelin splitting for continuous time Harris recurrent Markov processes and application to kernel estimation for multi-dimensional diffusions. Stoch. Proc. Appl. 118 (2008) 1301-1321. | MR | Zbl

[16] E. Löcherbach, D. Loukianova and O. Loukianov, Deviation bounds in ergodic theorem for positively recurrent one-dimensional diffusions and integrability of hitting times. Ann. Inst. Henri Poincaré 47 (2011) 425-449. | Numdam | Zbl

[17] E. Nummelin, A splitting technique for Harris recurrent Markov chains. Z. Wahrscheinlichkeitstheorie Verw. Geb. 43 (1978) 309-318. | MR | Zbl

[18] S. Pal, Concentration for multidimensional diffusions and their boundary local times. To appear in Probab. Theory Relat. Fields (2011), DOI 10.1007/s00440-011-0368-1 | MR | Zbl

[19] D. Revuz, Markov chains, Revised edition. Amsterdam, North Holland (1984). | MR | Zbl

[20] E. Rio, Théorie asymptotique des processus aléatoires faiblement dépendants. Springer. Math. Appl. 31 (2000). | MR | Zbl

[21] T. Simon, Support theorem for jump processes. Stoch. Proc. Appl. 89 (2000) 1-30. | MR | Zbl

[22] A.Yu. Veretennikov, On polynomial mixing bounds for stochastic differential equations. Stoch. Proc. Appl. 70 (1997) 115-127. | MR | Zbl

[23] A.Yu. Veretennikov and S.A. Klokov, On subexponential mixing rate for Markov processes. Teor. Veroyatnost. i Primenen 49 (2004) 21-35. | MR | Zbl

[24] L. Wu, A deviation inequality for non-reversible Markov process, Ann. Inst. Henri Poincaré 36 (2000) 435-445. | Numdam | MR | Zbl

Cité par Sources :