The dual attainment of the Monge-Kantorovich transport problem is analyzed in a general setting. The spaces X,Y are assumed to be polish and equipped with Borel probability measures μ and ν. The transport cost function c : X × Y → [0,∞] is assumed to be Borel measurable. We show that a dual optimizer always exists, provided we interpret it as a projective limit of certain finitely additive measures. Our methods are functional analytic and rely on Fenchel's perturbation technique.
Mots-clés : optimal transport, duality in function spaces, Fenchel's perturbation technique
@article{PS_2012__16__306_0, author = {Beiglb\"ock, Mathias and L\'eonard, Christian and Schachermayer, Walter}, title = {A generalized dual maximizer for the {Monge-Kantorovich} transport problem}, journal = {ESAIM: Probability and Statistics}, pages = {306--323}, publisher = {EDP-Sciences}, volume = {16}, year = {2012}, doi = {10.1051/ps/2011163}, mrnumber = {2956577}, zbl = {1263.49057}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ps/2011163/} }
TY - JOUR AU - Beiglböck, Mathias AU - Léonard, Christian AU - Schachermayer, Walter TI - A generalized dual maximizer for the Monge-Kantorovich transport problem JO - ESAIM: Probability and Statistics PY - 2012 SP - 306 EP - 323 VL - 16 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ps/2011163/ DO - 10.1051/ps/2011163 LA - en ID - PS_2012__16__306_0 ER -
%0 Journal Article %A Beiglböck, Mathias %A Léonard, Christian %A Schachermayer, Walter %T A generalized dual maximizer for the Monge-Kantorovich transport problem %J ESAIM: Probability and Statistics %D 2012 %P 306-323 %V 16 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ps/2011163/ %R 10.1051/ps/2011163 %G en %F PS_2012__16__306_0
Beiglböck, Mathias; Léonard, Christian; Schachermayer, Walter. A generalized dual maximizer for the Monge-Kantorovich transport problem. ESAIM: Probability and Statistics, Tome 16 (2012), pp. 306-323. doi : 10.1051/ps/2011163. http://archive.numdam.org/articles/10.1051/ps/2011163/
[1] An introduction to infinite ergodic theory, in Math. Surveys Monogr., Amer. Math. Soc. Providence, RI 50 (1997). | MR | Zbl
,[2] The visits to zero of some deterministic random walks. Proc. London Math. Soc. 44 (1982) 535-553. | MR | Zbl
and ,[3] Existence and stability results in the L1-theory of optimal transportation, CIME Course Lect. Notes Math. 1813 (2003) 123-160. | MR | Zbl
and ,[4] Optimal and better transport plans. J. Funct. Anal. 256 (2009) 1907-1927. | MR | Zbl
, , and ,[5] A general duality theorem for the Monge-Kantorovich transport problem. Submitted (2009). | Zbl
, and ,[6] On the duality of the Monge-Kantorovich transport problem, in Summer school on optimal transport. Séminaires et Congrès, Société Mathématique de France, Institut Fourier, Grenoble (2009)
, and ,[7] Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44 (1991) 375-417. | MR | Zbl
,[8] Duality for Borel measurable cost functions. Trans. Amer. Math. Soc. 363 (2011) 4203-4224. | MR | Zbl
and ,[9] Exp. No. 5, Dépt. Math. Informat., Univ. Rennes, Rennes (1976) 7.
(Univ. Rennes, Rennes, 1976).[10] Free boundaries in optimal transport and Monge-Ampere obstacle problems. Ann. of Math. 171 (2010) 673-730. | MR | Zbl
and ,[11] Invariance principles in probability for triangular arrays of B-valued random vectors and some applications. Ann. Probab. 10 (1982) 346-373. | MR | Zbl
,[12] Wasserstein distance on configuration space. Potential Anal. 28 (2008) 283-300. | MR | Zbl
,[13] Upper bounds on Rubinstein distances on configuration spaces and applications. Commun. Stochastic Anal. 4 (2010) 377-399. | MR
, and ,[14] Probabilities and metrics, Convergence of laws on metric spaces, with a view to statistical testing, No. 45. Matematisk Institut, Aarhus Universitet, Aarhus. Lect. Notes Ser. (1976). | MR | Zbl
,[15] Real analysis and probability, Cambridge University Press, Cambridge. Cambridge Studies in Adv. Math. 74 (2002). Revised reprint of the 1989 original. | MR | Zbl
,[16] Sur le théorème de Kantorovich-Rubinstein dans les espaces polonais in Seminar on Probability, XV (Univ. Strasbourg, Strasbourg, 1979/1980) (French). Lect. Notes Math. 850 (1981) 6-10. | Numdam | MR | Zbl
,[17] The optimal partial transport problem. Arch. Rational Mech. Anal. 195 (2010) 533-560. | MR | Zbl
,[18] Measure transport on Wiener space and the Girsanov theorem. C. R. Math. Acad. Sci. Paris 334 (2002) 1025-1028. | MR | Zbl
and ,[19] Monge-Kantorovitch measure transportation and Monge-Ampère equation on Wiener space. Probab. Theory Relat. Fields 128 (2004) 347-385. | MR | Zbl
and ,[20] Monge-Kantorovitch measure transportation, Monge-Ampère equation and the Itô calculus, in Stochastic analysis and related topics in Kyoto. Adv. Stud. Pure Math. Math. Soc. Japan 41 (2004) 49-74. | Zbl
and ,[21] Solution of the Monge-Ampère equation on Wiener space for general log-concave measures. J. Funct. Anal. 232 (2006) 29-55. | MR | Zbl
and ,[22] On a class of extremal problems in statistics. Math. Operationsforsch. Statist. Ser. Optim. 12 (1981) 123-135. | MR | Zbl
and ,[23] The geometry of optimal transportation. Acta Math. 177 (1996) 113-161. | MR | Zbl
and ,[24] On the translocation of masses. C. R. (Dokl.) Acad. Sci. URSS 37 (1942) 199-201. | MR | Zbl
,[25] On a space of completely additive functions. Vestnik Leningrad. Univ. 13 (1958) 52-59. | Zbl
and ,[26] Duality theorems for marginal problems. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 67 (1984) 399-432. | MR | Zbl
,[27] A saddle-point approach to the Monge-Kantorovich transport problem. ESAIM : COCV 17 (2011) 682-704. | Numdam | MR | Zbl
,[28] Existence and uniqueness of monotone measure-preserving maps. Duke Math. J. 80 (1995) 309-323. | MR | Zbl
,[29] A simple proof of duality theorem for Monge-Kantorovich problem. Kodai Math. J. 29 (2006) 1-4. | MR | Zbl
,[30] Duality theorem for the stochastic optimal control problem. Stoch. Proc. Appl. 116 (2006) 1815-1835. | MR | Zbl
and ,[31] A general duality theorem for marginal problems. Probab. Theory Relat. Fields 101 (1995) 311-319. | MR | Zbl
and ,[32] Duality and perfect probability spaces. Proc. Amer. Math. Soc. 124 (1996) 2223-2228. | MR | Zbl
and ,[33] Methods of Modern Mathematical Physics, I : Functional Analysis. Academic Press (1980). | MR | Zbl
and ,[34] On c-optimal random variables. Stat. Probab. Lett. 27 (1996) 267-270. | MR | Zbl
,[35] A cylinder flow arising from irregularity of distribution. Compositio Math. 36 (1978) 225-232. | Numdam | MR | Zbl
,[36] Characterization of optimal transport plans for the Monge-Kantorovich problem. Proc. Amer. Math. Soc. 137 (2009) 519-529. | MR | Zbl
and ,[37] On minimal metrics in the space of random variables. Teor. Veroyatnost. i Primenen. 27 (1982) 401-405. | MR | Zbl
,[38] A necessary, and sufficient condition for invertibility of adapted perturbations of identity on Wiener space. C. R. Acad. Sci. Paris, Ser. I 346 (2008) 897-900. | Zbl
,[39] Sufficient conditions for the invertibility of adapted perturbations of identity on the Wiener space. Probab. Theory Relat. Fields 139 (2007) 207-234. | MR | Zbl
and ,[40] Topics in Optimal Transportation, in Graduate Studies in Mathematics. Amer. Math. Soc., Providence RI 58 (2003). | MR | Zbl
,[41] Optimal Transport, Old and New, in Grundlehren der mathematischen Wissenschaften. Springer 338 (2009). | MR | Zbl
,Cité par Sources :