In this paper, we consider a new framework where two types of data are available: experimental data Y1,...,Yn supposed to be i.i.d from Y and outputs from a simulated reduced model. We develop a procedure for parameter estimation to characterize a feature of the phenomenon Y. We prove a risk bound qualifying the proposed procedure in terms of the number of experimental data n, reduced model complexity and computing budget m. The method we present is general enough to cover a wide range of applications. To illustrate our procedure we provide a numerical example.
Mots-clés : M-estimation, inverse problems, empirical processes, oracle inequalities, model selection
@article{PS_2013__17__740_0, author = {Rachdi, Nabil and Fort, Jean-Claude and Klein, Thierry}, title = {Risk bounds for new {M-estimation} problems}, journal = {ESAIM: Probability and Statistics}, pages = {740--766}, publisher = {EDP-Sciences}, volume = {17}, year = {2013}, doi = {10.1051/ps/2012025}, mrnumber = {3126160}, zbl = {1287.65008}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ps/2012025/} }
TY - JOUR AU - Rachdi, Nabil AU - Fort, Jean-Claude AU - Klein, Thierry TI - Risk bounds for new M-estimation problems JO - ESAIM: Probability and Statistics PY - 2013 SP - 740 EP - 766 VL - 17 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ps/2012025/ DO - 10.1051/ps/2012025 LA - en ID - PS_2013__17__740_0 ER -
%0 Journal Article %A Rachdi, Nabil %A Fort, Jean-Claude %A Klein, Thierry %T Risk bounds for new M-estimation problems %J ESAIM: Probability and Statistics %D 2013 %P 740-766 %V 17 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ps/2012025/ %R 10.1051/ps/2012025 %G en %F PS_2013__17__740_0
Rachdi, Nabil; Fort, Jean-Claude; Klein, Thierry. Risk bounds for new M-estimation problems. ESAIM: Probability and Statistics, Tome 17 (2013), pp. 740-766. doi : 10.1051/ps/2012025. http://archive.numdam.org/articles/10.1051/ps/2012025/
[1] Nonlinear methods for inverse statistical problems. Comput. Stat. Data Anal. 55 (2011) 132-142. | MR | Zbl
, , , , and ,[2] Convergence of probability measures. Wiley New York (1968). | MR | Zbl
,[3] Uncertainty in industrial practice. John Wiley.
, and , editors.[4] Justification and extension of Doob's heuristic approach to the Kolmogorov-Smirnov theorems. Annal. Math. Stat. (1952) 277-281. | MR | Zbl
,[5] Weak convergence of measures on nonseparable metric spaces and empirical measures on euclidian spaces. Illinois J. Math. 11 (1966) 109-126. | MR | Zbl
,[6] Empirical Processes. Instit. Math. Stat., Hayward, CA (1983). | MR
,[7] Uniform bounds for norms of sums of independent random functions (2009) Preprint: arXiv:0904.1950. | MR | Zbl
and ,[8] Robust estimation of a location parameter. Annal. Math. Stat. (1964) 73-101. | MR | Zbl
,[9] Robust statistics. Wiley-Interscience (1981). | MR | Zbl
,[10] Design and analysis of simulation experiments. Springer Verlag (2007). | MR | Zbl
,[11] Concentration around the mean for maxima of empirical processes. Ann. Prob. 33 (2005) 1060-1077. | MR | Zbl
and ,[12] Introduction to empirical processes and semiparametric inference. Springer Series in Statistics (2008). | MR | Zbl
,[13] The concentration of measure phenomenon. AMS (2001). | MR | Zbl
,[14] Concentration inequalities and model selection: Ecole d'Eté de Probabilités de Saint-Flour XXXIII-2003. Springer Verlag (2007). | MR | Zbl
,[15] Risk bounds for statistical learning. Annal. Stat. 34 (2006) 2326-2366. | MR | Zbl
and ,[16] Empirical processes: theory and applications. Regional Conference Series in Probability and Statistics Hayward (1990). | MR | Zbl
,[17] Stochastic inverse problem with noisy simulator- an application to aeronautic model. Annal. Facult. Sci. Toulouse 21. | Numdam | MR | Zbl
, and ,[18] The design and analysis of computer experiments. Springer Verlag (2003). | MR | Zbl
, and ,[19] Empirical processes with applications to statistics. Wiley Series in Probability and Statistics (1986). | MR | Zbl
and .[20] Physical systems with random uncertainties: chaos representations with arbitrary probability measure. SIAM J. Sci. Comput. 26 (2004) 395-410. | MR | Zbl
and ,[21] Sharper bounds for Gaussian and empirical processes. Annal. Prob. 22 (1994) 28-76. | MR | Zbl
,[22] Empirical processes in M-estimation. Cambridge University Press (2000). | MR | Zbl
,[23] Asymptotic statistics. Cambridge University Press (2000). | MR | Zbl
,[24] Weak Convergence and Empirical Processes. Springer Series in Statistics (1996). | MR | Zbl
and ,[25] Modélisation comportementale de systèmes non-linéaires multivariables par méthodes à noyaux et applications. Ph.D. thesis (2005).
.Cité par Sources :