We study some limit theorems for the normalized law of integrated Brownian motion perturbed by several examples of functionals: the first passage time, the th passage time, the last passage time up to a finite horizon and the supremum. We show that the penalization principle holds in all these cases and give descriptions of the conditioned processes. In particular, it is remarkable that the penalization by the th passage time is independent of , and always gives the same penalized process, i.e. integrated Brownian motion conditioned not to hit 0. Our results rely on some explicit formulae obtained by Lachal and on enlargement of filtrations.
DOI : 10.1051/ps/2014018
Mots-clés : Integrated Brownian motion, penalization, passage times
@article{PS_2015__19__148_0, author = {Profeta, Christophe}, title = {Some limiting laws associated with the integrated {Brownian} motion}, journal = {ESAIM: Probability and Statistics}, pages = {148--171}, publisher = {EDP-Sciences}, volume = {19}, year = {2015}, doi = {10.1051/ps/2014018}, mrnumber = {3386368}, zbl = {1333.60180}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ps/2014018/} }
TY - JOUR AU - Profeta, Christophe TI - Some limiting laws associated with the integrated Brownian motion JO - ESAIM: Probability and Statistics PY - 2015 SP - 148 EP - 171 VL - 19 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ps/2014018/ DO - 10.1051/ps/2014018 LA - en ID - PS_2015__19__148_0 ER -
Profeta, Christophe. Some limiting laws associated with the integrated Brownian motion. ESAIM: Probability and Statistics, Tome 19 (2015), pp. 148-171. doi : 10.1051/ps/2014018. http://archive.numdam.org/articles/10.1051/ps/2014018/
M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Reprint of the 1972 edition. Dover Publications Inc., New York (1992). | Zbl
F. Aurzada and T. Simon, Persistence probabilities and exponents. Preprint arXiv:1203.6554 (2012). | MR
Reflecting a Langevin process at an absorbing boundary. Ann. Probab. 35 (2007) 2021–2037. | MR | Zbl
,On confined McKean Langevin processes satisfying the mean no-permeability boundary condition. Stoch. Process. Appl. 121 (2011) 2751–2775. | MR | Zbl
and ,P. Debs, Penalisation of the standard random walk by a function of the one-sided maximum, of the local time, or of the duration of the excursions, in Séminaire de probabilités XLII. Vol. 1979, Lect. Notes Math. Springer, Berlin (2009) 331–363. | MR | Zbl
A. Erdélyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Tables of integral transforms. McGraw-Hill Book Company, Inc., New York-Toronto-London (1954), Vol. I. Based, in part, on notes left by Harry Bateman. | MR | Zbl
W. Feller, An introduction to probability theory and its applications. Second edition. John Wiley & Sons Inc., New York (1971), Vol. II. | MR | Zbl
Integrated Brownian motion, conditioned to be positive. Ann. Probab. 27 (1999) 1283–1303. | MR | Zbl
, and ,On the first passage of the integrated Wiener process. Ann. Mat. Statist. 42 (1971) 2150–2155. | MR | Zbl
,E. Jacob, Processus de Langevin réfléchis au second ordre. Ph.D. thesis, Université Pierre et Marie Curie, Paris VI (2010).
Y. Isozaki and S. Kotani, Asymptotic estimates for the first hitting time of fluctuating additive functionals of Brownian motion. In Séminaire de Probabilités, XXXIV. Vol. 1729 of Lect. Notes Math. Springer, Berlin (2000) 374–387. | MR | Zbl
I. Karatzas and S.E. Shreve, Brownian motion and stochastic calculus, 2nd edition. Vol. 113 of Grad. Texts Math. Springer-Verlag, New York (1991). | MR | Zbl
Chung’s law for integrated Brownian motion. Trans. Amer. Math. Soc. 350 (1998) 4253–4264. | MR | Zbl
and ,Sur l’intégrale du mouvement brownien. C. R. Acad. Sci. Paris Sér. I Math. 311 (1990) 461–464. | MR | Zbl
,Sur le premier instant de passage de l’intégrale du mouvement brownien. Ann. Inst. Henri Poincaré Probab. Statist. 27 (1991) 385–405. | MR | Zbl
,Sur les excursions de l’intégrale du mouvement brownien. C. R. Acad. Sci. Paris Sér. I Math. 314 (1992) 1053–1056. | MR | Zbl
,Dernier instant de passage pour l’intégrale du mouvement brownien. Stochastic Process. Appl. 49 (1994) 57–64. | MR | Zbl
,Sur les temps de passages successifs de l’intégrale du mouvement brownien. C. R. Acad. Sci. Paris Sér. I Math. 321 (1995) 903–908. | MR | Zbl
,Les temps de passage successifs de l’intégrale du mouvement brownien. Ann. Inst. Henri Poincaré Probab. Statist. 33 (1997) 1–36. | MR | Zbl
,A. Lachal, Application de la théorie des excursions à l’intégrale du mouvement brownien. In Séminaire de Probabilités XXXVII. Vol. 1832 of Lect. Notes Math. Springer, Berlin (2003) 109–195. | MR | Zbl
Jr. A winding problem for a resonator driven by a white noise. J. Math. Kyoto Univ. 2 (1963) 227–235. | MR | Zbl
,R. Mansuy and M. Yor, Random times and enlargements of filtrations in a Brownian setting. Vol. 1873 of Lect. Notes Math. Springer-Verlag, Berlin (2006). | MR | Zbl
J. Najnudel, B. Roynette and M. Yor, A global view of Brownian penalisations. Vol. 19 of MSJ Memoirs. Mathematical Society of Japan, Tokyo (2009). | MR | Zbl
Penalizing null recurrent diffusions. Electron. J. Probab. 17 (2012) 23. | MR | Zbl
,Limiting laws associated with Brownian motion perturbed by its maximum, minimum and local time II. Studia Sci. Math. Hungar. 43 (2006) 295–360. | MR | Zbl
, and ,Some penalisations of the Wiener measure. Jpn. J. Math. 1 (2006) 263–290. | MR | Zbl
, and ,B. Roynette and M. Yor, Penalising Brownian paths. Vol. 1969 of Lect. Notes Math. Springer-Verlag, Berlin (2009). | MR | Zbl
On subexponentiality of the Lévy measure of the diffusion inverse local time; with applications to penalizations. Electron. J. Probab. 14 (2009) 1963–1991. | MR | Zbl
and ,A characterization of the first hitting time of double integral processes to curved boundaries. Adv. Appl. Probab. 40 (2008) 501–528. | MR | Zbl
and ,Penalisation of a stable Lévy process involving its one-sided supremum. Ann. Inst. Henri Poincaré Probab. Stat. 46 (2010) 1042–1054. | MR | Zbl
, and ,Cité par Sources :