Refined descriptive sampling (RDS) is a method of sampling that can be used to produce input values for estimation of expectation of functions of output variables. This paper gives a generalization of RDS method for K input variables. An estimator of RDS is defined and shown to be unbiased and efficient compared to simple random sampling with respect to variance criterion for a class of estimators. The efficiency of RDS algorithm is discussed at the end of the paper.
DOI : 10.1051/ps/2014020
Mots-clés : Sampling, variance, estimation, simulation
@article{PS_2015__19__135_0, author = {Ourbih-Tari, Megdouda and Guebli, Sofia}, title = {A comparison of methods for selecting values of simulation input variables}, journal = {ESAIM: Probability and Statistics}, pages = {135--147}, publisher = {EDP-Sciences}, volume = {19}, year = {2015}, doi = {10.1051/ps/2014020}, mrnumber = {3386367}, zbl = {1351.62027}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ps/2014020/} }
TY - JOUR AU - Ourbih-Tari, Megdouda AU - Guebli, Sofia TI - A comparison of methods for selecting values of simulation input variables JO - ESAIM: Probability and Statistics PY - 2015 SP - 135 EP - 147 VL - 19 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ps/2014020/ DO - 10.1051/ps/2014020 LA - en ID - PS_2015__19__135_0 ER -
%0 Journal Article %A Ourbih-Tari, Megdouda %A Guebli, Sofia %T A comparison of methods for selecting values of simulation input variables %J ESAIM: Probability and Statistics %D 2015 %P 135-147 %V 19 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ps/2014020/ %R 10.1051/ps/2014020 %G en %F PS_2015__19__135_0
Ourbih-Tari, Megdouda; Guebli, Sofia. A comparison of methods for selecting values of simulation input variables. ESAIM: Probability and Statistics, Tome 19 (2015), pp. 135-147. doi : 10.1051/ps/2014020. http://archive.numdam.org/articles/10.1051/ps/2014020/
I.T. Dimov, Monte Carlo methods for applied scientists. World Scientific Publishing Co. Pte, Ltd Singapore (2008). | MR | Zbl
G.S. Fishman, Monte-Carlo Concepts Algorithms and Applications. Springer-Verlag, Berlin (1997). | MR | Zbl
A spectral-based Monte Carlo algorithm for generating samples of nonstationary Gaussian processes. Monte Carlo Methods Appl. 16 (2010) 143–165. | MR | Zbl
,A. Keller, S. Heinrich and H. Niederreiter, Monte Carlo and Quasi Monte Carlo Methods 2008. Springer (2008). | MR | Zbl
Some concepts of dependence. Ann. Math. Statist. 35 (1966) 1137–1153. | MR | Zbl
,On Latin hypercube sampling. Ann. Statist. 24 (1996) 2058–2080. | MR | Zbl
,A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21 (1979) 239-245. | MR | Zbl
, and ,H. Niederreiter, Random number generation and quasi monte Carlo methods. Society for Industrial and Applied Mathematics, Philadelphia (1992). | MR | Zbl
Sampling methods and parallelism into Monte Carlo simulation. J. Statist. Adv. Theory Appl. 1 (2009) 169–192. | Zbl
and ,M. Ourbih-Tari, A. Aloui and A. Alioui, A software component which generates regular numbers from refined descriptive sampling, in Proc. of the European Simulation Modelling conference, edited by Marwan Al-Akaidi. Leicester United Kingdom (2009) 23–25.
M. Pidd, Computer simulation in management science, 5 edn. John Wiley and Sons (2004).
An Approximate Method for generating Symmetric Random Variables. Communications of the ACM 15 (1972) 987–990. | Zbl
and ,Descriptive Sampling A better approach to Monte Carlo simulation. J. Oper. Res. Soc. 41 (1990) 1133–1142.
,Monte Carlo evaluation of periodic error uncertainty. Precision Engrg. 31 (2007) 251-259.
and ,I.M. Sobol, A primer for the Monte Carlo method. CRS Press (1994). | MR | Zbl
Flowshop simulator using different sampling methods. Oper. Res. Inter. J. 5 (2005) 261–272.
and ,The three phase discrete event simulation using some sampling methods. Int. J. Appl. Math. Statist. 3 (2005) 37–48. | MR | Zbl
and ,Refined Descriptive Sampling A better approach to Monte Carlo simulation. Simul. Model. Pract. Theory 14 (2006) 143–160.
and ,Cité par Sources :