Poisson boundary of a relativistic diffusion in curved space-times: an example
ESAIM: Probability and Statistics, Tome 19 (2015), pp. 502-514.

We study in details the long-time asymptotic behavior of a relativistic diffusion taking values in the unitary tangent bundle of a curved Lorentzian manifold, namely a spatially flat and fast expanding Robertson–Walker space-time. We prove in particular that the Poisson boundary of the diffusion can be identified with the causal boundary of the underlying manifold.

Reçu le :
DOI : 10.1051/ps/2015003
Classification : 60J60, 60J45, 83F05
Mots-clés : Relativistic diffusion, lorentzian manifolds, poisson boundary, causal boundary
Angst, Jürgen 1

1 IRMAR, Université Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France
@article{PS_2015__19__502_0,
     author = {Angst, J\"urgen},
     title = {Poisson boundary of a relativistic diffusion in curved space-times: an example},
     journal = {ESAIM: Probability and Statistics},
     pages = {502--514},
     publisher = {EDP-Sciences},
     volume = {19},
     year = {2015},
     doi = {10.1051/ps/2015003},
     zbl = {1333.60168},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ps/2015003/}
}
TY  - JOUR
AU  - Angst, Jürgen
TI  - Poisson boundary of a relativistic diffusion in curved space-times: an example
JO  - ESAIM: Probability and Statistics
PY  - 2015
SP  - 502
EP  - 514
VL  - 19
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ps/2015003/
DO  - 10.1051/ps/2015003
LA  - en
ID  - PS_2015__19__502_0
ER  - 
%0 Journal Article
%A Angst, Jürgen
%T Poisson boundary of a relativistic diffusion in curved space-times: an example
%J ESAIM: Probability and Statistics
%D 2015
%P 502-514
%V 19
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ps/2015003/
%R 10.1051/ps/2015003
%G en
%F PS_2015__19__502_0
Angst, Jürgen. Poisson boundary of a relativistic diffusion in curved space-times: an example. ESAIM: Probability and Statistics, Tome 19 (2015), pp. 502-514. doi : 10.1051/ps/2015003. http://archive.numdam.org/articles/10.1051/ps/2015003/

V. Alaña and J.L. Flores, The causal boundary of product spacetimes. Gen. Relativ. Gravitation 39 (2007) 1697–1718. | Zbl

L.J. Alías and A. Gervasio Colares, Uniqueness of spacelike hypersurfaces with constant higher order mean curvature in generalized Robertson-Walker space-times. Math. Proc. Cambridge Philos. Soc. 143 (2007) 703–729. | Zbl

J. Angst, Asymptotic behavior of a relativistic diffusion in Robertson-Walker space-times. To appear in Ann. Inst. Henri Poincaré. Preprint arXiv:1405.0142 (2014).

J. Angst and C. Tardif, Dévissage of a Poisson boundary under equivariance and regularity conditions. Séminaire de probabilités de Strasbourg. Preprint arXiv:1311.4428 (2015).

J. Angst and C. Tardif, Poisson boundary of a relativistic Markov processes. Work in progress (2015).

M. Arnaudon, A. Thalmaier and S. Ulsamer, Existence of non-trivial harmonic functions on Cartan-Hadamard manifolds of unbounded curvature. Mathematische Zeitschrifft 263 (2009) 369–409. | Zbl

I. Bailleul, Poisson boundary of a relativistic diffusion. Probab. Theory Related Fields 141 (2008) 283–329. | Zbl

R.M. Dudley, Lorentz-invariant Markov processes in relativistic phase space. Ark. Mat. 6 (1966) 241–268. | MR | Zbl

R.M. Dudley, Asymptotics of some relativistic Markov processes. Proc. Natl. Acad. Sci. USA 70 (1973) 3551–3555. | MR | Zbl

J. Franchi and Y. Le Jan, Relativistic diffusions and Schwarzschild geometry. Comm. Pure Appl. Math. 60 (2007) 187–251. | MR | Zbl

R. Geroch, E.H. Kronheimer and R. Penrose, Ideal points in space-time. Roy. Soc. London Proc. Ser. A 327 (1972) 545–567. | MR | Zbl

S.W. Hawking and G.F.R. Ellis, The Large Scale Structure of Space-Time. Vol. I of Camb. Monogr. Math. Phys. Cambridge University Press, London (1973). | MR | Zbl

N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusions Processes. North Holland, 2nd edition (1989). | MR | Zbl

C. Tardif, Lyapunov spectrum of a relativistic stochastic flow in the Poincaré group. Stoch. Dyn. 14 (2014) 1450013. | MR | Zbl

S. Weinberg, Gravitation and Cosmology. John Wiley and Sons (1972).

Cité par Sources :