Weighted least-squares inference for multivariate copulas based on dependence coefficients
ESAIM: Probability and Statistics, Tome 19 (2015), pp. 746-765.

In this paper, we address the issue of estimating the parameters of general multivariate copulas, that is, copulas whose partial derivatives may not exist. To this aim, we consider a weighted least-squares estimator based on dependence coefficients, and establish its consistency and asymptotic normality. The estimator’s performance on finite samples is illustrated on simulations and a real dataset.

Reçu le :
DOI : 10.1051/ps/2015014
Classification : 62H12, 62F12, 60E05
Mots-clés : Partial derivatives, singular component, weighted least-squares, method of moments, dependence coefficients, parametric inference, multivariate copulas
Mazo, Gildas 1 ; Girard, Stéphane 1 ; Forbes, Florence 1

1 Inria Grenoble Rhône-Alpes and Laboratoire Jean Kuntzmann, Inovallée, 655, av. de l’Europe, Montbonnot, 38334 Saint-Ismier Cedex, France.
@article{PS_2015__19__746_0,
     author = {Mazo, Gildas and Girard, St\'ephane and Forbes, Florence},
     title = {Weighted least-squares inference for multivariate copulas based on dependence coefficients},
     journal = {ESAIM: Probability and Statistics},
     pages = {746--765},
     publisher = {EDP-Sciences},
     volume = {19},
     year = {2015},
     doi = {10.1051/ps/2015014},
     zbl = {1392.62157},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ps/2015014/}
}
TY  - JOUR
AU  - Mazo, Gildas
AU  - Girard, Stéphane
AU  - Forbes, Florence
TI  - Weighted least-squares inference for multivariate copulas based on dependence coefficients
JO  - ESAIM: Probability and Statistics
PY  - 2015
SP  - 746
EP  - 765
VL  - 19
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ps/2015014/
DO  - 10.1051/ps/2015014
LA  - en
ID  - PS_2015__19__746_0
ER  - 
%0 Journal Article
%A Mazo, Gildas
%A Girard, Stéphane
%A Forbes, Florence
%T Weighted least-squares inference for multivariate copulas based on dependence coefficients
%J ESAIM: Probability and Statistics
%D 2015
%P 746-765
%V 19
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ps/2015014/
%R 10.1051/ps/2015014
%G en
%F PS_2015__19__746_0
Mazo, Gildas; Girard, Stéphane; Forbes, Florence. Weighted least-squares inference for multivariate copulas based on dependence coefficients. ESAIM: Probability and Statistics, Tome 19 (2015), pp. 746-765. doi : 10.1051/ps/2015014. http://archive.numdam.org/articles/10.1051/ps/2015014/

D. Berg, Copula goodness-of-fit testing: an overview and power comparison. Eur. J. Finance 15 (2009) 675–701.

A. Bücher, H. Dette, and S. Volgushev, New estimators of the Pickands dependence function and a test for extreme-value dependence. Ann. Statist. 39 (2011) 1963–2006. | Zbl

A. Bücher, J. Segers and S. Volgushev, When uniform weak convergence fails: Empirical processes for dependence functions and residuals via epi- and hypographs. Ann. Stat. 42 (2014) 1598–1634. | Zbl

P. Capéraà, A.L. Fougères and C. Genest, A nonparametric estimation procedure for bivariate extreme value copulas. Biometrika 84 (1997) 567–577. | Zbl

S. Coles, An Introduction to Statistical Modeling of Extreme Values. Springer (2001). | Zbl

C.M. Cuadras and J. Augé, A continuous general multivariate distribution and its properties. Commun. Stat. – Theory Methods 10 (1981) 339–353. | Zbl

P. Deheuvels, On the limiting behavior of the Pickands estimator for bivariate extreme-value distributions. Stat. Probab. Lett. 12 (1991) 429–439. | Zbl

F. Durante and G. Salvadori, On the construction of multivariate extreme value models via copulas. Environmetrics 21 (2010) 143–161.

F. Durante and C. Sempi, Copula Theory: An Introduction. In Copula Theory and Its Applications. Springer (2010) 3–31.

J. Einmahl, A. Krajina and J. Segers, An M-estimator for tail dependence in arbitrary dimensions. Ann. Stat. 40 (2012) 1764–1793. | Zbl

M. Ferreira, Nonparametric estimation of the tail-dependence coefficient. REVSTAT–Stat. J. 11 (2013) 1–16. | Zbl

M. Fréchet, Remarques au sujet de la note précédente. C. R. Acad. Sci. Paris Sér. I Math. 246 (1958) 2719–2720. | Zbl

C. Genest and L.P. Rivest, Statistical inference procedures for bivariate Archimedean copulas. J. Am. Stat. Assoc. 88 (1993) 1034–1043. | Zbl

C. Genest and B. Rémillard, Test of independence and randomness based on the empirical copula process. Test 13 (2004) 335–369. | Zbl

C. Genest and A.C. Favre, Everything you always wanted to know about copula modeling but were afraid to ask. J. Hydrol. Eng. 12 (2007) 347–368.

C. Genest and J. Segers, Rank-based inference for bivariate extreme-value copulas. Ann. Stat. 37 (2009) 2990–3022. | Zbl

C. Genest, K. Ghoudi and L.P. Rivest, A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika 82 (1995) 543–552. | Zbl

C. Genest, B. Rémillard and D. Beaudoin, Goodness-of-fit tests for copulas: A review and a power study. Insurance: Mathematics and Economics 44 (2009) 199–213. | Zbl

C. Genest, J. Nešlehová and N. Ben Ghorbal, Estimators based on Kendall’s tau in multivariate copula models. Australian & New Zealand J. Stat. 53 (2011) 157–177. | Zbl

G. Gudendorf and J. Segers, Extreme-value Copulas. In Copula Theory and Its Applications Springer (2010) 127–145.

P. Hall and N. Tajvidi, Distribution and dependence-function estimation for bivariate extreme-value distributions. Bernoulli 6 (2000) 835–844. | Zbl

L.P. Hansen, Large sample properties of generalized method of moments estimators. Econometrica 50 (1982) 1029–1054. | Zbl

W. Hoeffding, A class of statistics with asymptotically normal distribution. Ann. Math. Stat. 19 (1948) 293–325. | Zbl

H. Joe, Multivariate Models and Dependence Concepts. Chapman & Hall/CRC, Boca Raton, FL (2001). | Zbl

C. Klüppelberg and G. Kuhn, Copula structure analysis. J. R. Statist. Soc. B 71 (2009) 737–753. | Zbl

I. Kojadinovic and J. Yan, A goodness-of-fit test for multivariate multiparameter copulas based on multiplier central limit theorems. Stat. Comput. 21 (2011) 17–30. | Zbl

P. Krupskii and H. Joe, Factor copula models for multivariate data. J. Multivariate Anal. 120 (2013) 85–101. | Zbl

G. Mazo, S. Girard and F. Forbes, A flexible and tractable class of one-factor copulas. To appear in Stat. Comput. (2015) . | DOI

R.B. Nelsen, An Introduction to Copulas. Springer (2006). | Zbl

R.B. Nelsen, J.J. Quesada-Molina, J.A. Rodríguez-Lallena and M. Úbeda-Flores, Kendall distribution functions. Stat. Probab. Lett. 65 (2003) 263–268. | Zbl

D.H. Oh and A.J. Patton, Simulated method of moments estimation for copula-based multivariate models. J. Am. Stat. Assoc. 108 (2013) 689–700. | Zbl

J. Pickands, Multivariate Extreme Value Distributions. Proc. of the 43rd Session of the International Statistical Institute 2 (1981) 859–878. | Zbl

J.R. Schott, Matrix analysis for statistics. Wiley (2005). | Zbl

J. Segers, Asymptotics of empirical copula processes under non-restrictive smoothness assumptions. Bernoulli 18 (2012) 764–782. | Zbl

H. Tsukahara, Semiparametric estimation in copula models. The Canadian Journal of Statistics / La Revue Canadienne de Statistique 33 (2005) 357–375. | Zbl

A.W. Van der Vaart, Asymptotic Statistics. Cambridge University Press 3 (2000). | Zbl

Cité par Sources :