Posterior contraction rate for non-parametric Bayesian estimation of the dispersion coefficient of a stochastic differential equation
ESAIM: Probability and Statistics, Tome 20 (2016), pp. 143-153.

We consider the problem of non-parametric estimation of the deterministic dispersion coefficient of a linear stochastic differential equation based on discrete time observations on its solution. We take a Bayesian approach to the problem and under suitable regularity assumptions derive the posteror contraction rate. This rate turns out to be the optimal posterior contraction rate.

Reçu le :
Accepté le :
DOI : 10.1051/ps/2016008
Classification : 62G20, 62M05
Mots-clés : Dispersion coefficient, non-parametric Bayesian estimation, posterior contraction rate, stochastic differential equation
Gugushvili, Shota 1 ; Spreij, Peter 2

1 Mathematical Institute, Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands.
2 Korteweg-de Vries Institute for Mathematics, University of Amsterdam, PO Box 94248, 1090 GE Amsterdam, The Netherlands.
@article{PS_2016__20__143_0,
     author = {Gugushvili, Shota and Spreij, Peter},
     title = {Posterior contraction rate for non-parametric {Bayesian} estimation of the dispersion coefficient of a stochastic differential equation},
     journal = {ESAIM: Probability and Statistics},
     pages = {143--153},
     publisher = {EDP-Sciences},
     volume = {20},
     year = {2016},
     doi = {10.1051/ps/2016008},
     mrnumber = {3528621},
     zbl = {1357.62200},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ps/2016008/}
}
TY  - JOUR
AU  - Gugushvili, Shota
AU  - Spreij, Peter
TI  - Posterior contraction rate for non-parametric Bayesian estimation of the dispersion coefficient of a stochastic differential equation
JO  - ESAIM: Probability and Statistics
PY  - 2016
SP  - 143
EP  - 153
VL  - 20
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ps/2016008/
DO  - 10.1051/ps/2016008
LA  - en
ID  - PS_2016__20__143_0
ER  - 
%0 Journal Article
%A Gugushvili, Shota
%A Spreij, Peter
%T Posterior contraction rate for non-parametric Bayesian estimation of the dispersion coefficient of a stochastic differential equation
%J ESAIM: Probability and Statistics
%D 2016
%P 143-153
%V 20
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ps/2016008/
%R 10.1051/ps/2016008
%G en
%F PS_2016__20__143_0
Gugushvili, Shota; Spreij, Peter. Posterior contraction rate for non-parametric Bayesian estimation of the dispersion coefficient of a stochastic differential equation. ESAIM: Probability and Statistics, Tome 20 (2016), pp. 143-153. doi : 10.1051/ps/2016008. http://archive.numdam.org/articles/10.1051/ps/2016008/

S.A. van de Geer, Applications of Empirical Process Theory. Vol. 6 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (2000). | MR | Zbl

V. Genon-Catalot, C. Laredo and D. Picard, Nonparametric estimation of the diffusion coefficient by wavelets methods. Scand. J. Statist. 19 (1992) 317–335. | MR | Zbl

S. Ghosal, J.K. Ghosh and A.W. Van Der Vaart, Convergence rates of posterior distributions. Ann. Statist. 28 (2000) 500–531. | DOI | MR | Zbl

S. Ghosal and A.W. Van Der Vaart, Convergence rates of posterior distributions for non-i.i.d. observations. Ann. Statist. 35 (2007) 192–223. | DOI | MR | Zbl

S. Ghosal, J.K. Ghosh and R.V. Ramamoorthi, Non-informative priors via sieves and packing numbers. Advances in Statistical Decision Theory and Applications, Stat. Ind. Technol. Birkhäuser Boston, Boston, MA (1997) 119–132. | MR | Zbl

S. Ghosal, J.K. Ghosh and R.V. Ramamoorthi, Consistency issues in Bayesian nonparametrics. Asymptotics, Nonparametrics, and Time Series. Vol. 158 of Statist. Textbooks Monogr. Dekker, New York (1999) 639–667. | MR | Zbl

S. Gugushvili and P. Spreij, Non-parametric Bayesian estimation of a dispersion coefficient of the stochastic differential equation. ESAIM: PS 18 (2014) 332–341. | Zbl

M. Hoffmann, Minimax estimation of the diffusion coefficient through irregular samplings. Statist. Probab. Lett. 32 (1997) 11–24. | DOI | MR | Zbl

I. Karatzas and S.E. Shreve, Brownian Motion and Stochastic Calculus. Vol. 113 of Graduate Texts in Mathematics. Springer-Verlag, New York (1988). | MR | Zbl

B. Kleijn and A.W. Van Der Vaart, Misspecification in infinite-dimensional Bayesian statistics, Ann. Statist. 34 (2006) 837–877. | DOI | MR | Zbl

R. Nickl and J. Söhl, Nonparametric Bayesian posterior contraction rates for discretely observed scalar diffusions. Preprint arXiv:1510.05526 [math.ST] (2015). | MR

C.E. Rasmussen and C.K.I. Williams, Gaussian Processes for Machine Learning. Adaptive Computation and Machine Learning. MIT Press, Cambridge, MA (2006). | MR | Zbl

X. Shen and L. Wasserman, Rates of convergence of posterior distributions. Ann. Statist. 29 (2001) 687–714. | DOI | MR | Zbl

P. Soulier, Nonparametric estimation of the diffusion coefficient of a diffusion process. Stochastic Anal. Appl. 16 (1998) 185–200. | DOI | MR | Zbl

A.B. Tsybakov, Introduction to Nonparametric Estimation. Springer Series in Statistics. Revised and extended from the 2004 French original. Translated by Vladimir Zaiats. Springer, New York (2009). | MR | Zbl

A.W. Van Der Vaart and J.H. Van Zanten, Rates of contraction of posterior distributions based on Gaussian process priors. Ann. Statist. 36 (2008) 1435–1463. | DOI | MR | Zbl

J. van Waaij and H. van Zanten, Gaussian process methods for one-dimensional diffusions: optimal rates and adaptation. Preprint arXiv:1506.00515 [math.ST] (2015). | MR

L. Wasserman, Asymptotic properties of nonparametric Bayesian procedures. In Practical Nonparametric and Semiparametric Bayesian Statistics. Vol. 133 of Lect. Notes Stat. Springer, New York (1998) 293–304. | MR | Zbl

W.H. Wong and X. Shen, Probability inequalities for likelihood ratios and convergence rates of sieve MLEs. Ann. Statist. 23 (1995) 339–362. | MR | Zbl

Cité par Sources :