Statistical estimation of jump rates for a piecewise deterministic Markov processes with deterministic increasing motion and jump mechanism
ESAIM: Probability and Statistics, Tome 20 (2016), pp. 196-216.

We consider the class of Piecewise deterministic Markov processes (PDMP), whose state space is ( 0 , ) , that possess an increasing deterministic motion and with a deterministic jump mechanism. Well known examples for this class of processes are transmission control protocol (TCP) window size process and the processes modeling the size of a “marked” Escherichia coli cell. Having observed the PDMP until its nth jump, we construct a nonparametric estimator of the jump rate λ . Our main result is that for 𝒟 a compact subset of ( 0 , ) , if λ is in the Hölder space 8 ( 𝒟 ) , the squared-loss error of the estimator is asymptotically close to the speed of n - s / ( 2 s + 1 ) . Simulations illustrate the behavior of our estimator.

DOI : 10.1051/ps/2016013
Classification : 62M05, 62G05, 62G20, 60J25
Mots-clés : Piecewise deterministic markov processes, nonparametric estimation, jump rate estimation, ergodicity of Markov chains
Krell, Nathalie 1

1 Université de Rennes 1, Institut de Recherche mathématique de Rennes, CNRS-UMR 6625, Campus de Beaulieu, Bâtiment 22, 35042 Rennes cedex, France.
@article{PS_2016__20__196_0,
     author = {Krell, Nathalie},
     title = {Statistical estimation of jump rates for a piecewise deterministic {Markov} processes with deterministic increasing motion and jump mechanism},
     journal = {ESAIM: Probability and Statistics},
     pages = {196--216},
     publisher = {EDP-Sciences},
     volume = {20},
     year = {2016},
     doi = {10.1051/ps/2016013},
     mrnumber = {3528624},
     zbl = {06674053},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ps/2016013/}
}
TY  - JOUR
AU  - Krell, Nathalie
TI  - Statistical estimation of jump rates for a piecewise deterministic Markov processes with deterministic increasing motion and jump mechanism
JO  - ESAIM: Probability and Statistics
PY  - 2016
SP  - 196
EP  - 216
VL  - 20
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ps/2016013/
DO  - 10.1051/ps/2016013
LA  - en
ID  - PS_2016__20__196_0
ER  - 
%0 Journal Article
%A Krell, Nathalie
%T Statistical estimation of jump rates for a piecewise deterministic Markov processes with deterministic increasing motion and jump mechanism
%J ESAIM: Probability and Statistics
%D 2016
%P 196-216
%V 20
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ps/2016013/
%R 10.1051/ps/2016013
%G en
%F PS_2016__20__196_0
Krell, Nathalie. Statistical estimation of jump rates for a piecewise deterministic Markov processes with deterministic increasing motion and jump mechanism. ESAIM: Probability and Statistics, Tome 20 (2016), pp. 196-216. doi : 10.1051/ps/2016013. http://archive.numdam.org/articles/10.1051/ps/2016013/

O.O. Aalen, Statistical inference for a family of counting processes. ProQuest LLC, Ann Arbor, MI. Ph.D. thesis, University of California, Berkeley (1975). | MR

O.O. Aalen, Weak convergence of stochastic integrals related to counting processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 38 (1977) 261–277. | DOI | MR | Zbl

O.O. Aalen, Nonparametric inference for a family of counting processes. Ann. Statist. 6 (1978) 701–726. | DOI | MR | Zbl

P.K. Andersen, Ø. Borgan, R.D. Gill and N. Keiding, Statistical models based on counting processes. Springer Series in Statistics. Springer-Verlag, New York (1993). | MR | Zbl

S. Asmussen and H. Albrecher, Ruin probabilities. Vol. 14 of Adv. Ser. Statist. Sci. Appl. Probab. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2nd edition (2010). | MR | Zbl

R. Azaïs, F. Dufour and A. Gégout-Petit, Nonparametric estimation of the jump rate for non-homogeneous marked renewal processes. Ann. Inst. Henri Poincaré, Probab. Stat. 49 (2013) 1204–1231. | DOI | Numdam | MR | Zbl

R. Azaïs, A recursive nonparametric estimator for the transition kernel of a piecewise-deterministic Markov process. ESAIM: PS 18 (2014) 726–749. | DOI | MR | Zbl

R. Azaïs, J.B. Bardet, A. Genadot, N. Krell and P.-A. Zitt, Piecewise deterministic Markov process (pdmps). Recent results. ESAIM: Proc. Survey 44 (2014) 276–290 | DOI | MR | Zbl

R. Azaïs, F. Dufour and A. Gégout-Petit, Nonparametric estimation of the conditional distribution of the inter-jumping times for piecewise-deterministic Markov processes. Scandinavian J. Statist. 41 (2014) 950–969. | DOI | MR | Zbl

R. Azaïs and A. Genadot, Semi-parametric inference for the absorption features of a growth-fragmentation model. TEST 24 (2015) 341–360. | DOI | MR | Zbl

J.-B. Bardet, A. Christen and A. Guillin, F. Malrieu and P.-A. Zitt, Total variation estimates for the TCP process. Electron. J. Probab. 18 (2013) 10–21. | MR | Zbl

P.H. Baxendale, Renewal theory and computable convergence rates for geometrically ergodic Markov chains. Ann. Appl. Probab. 15 (2005) 700–738. | DOI | MR | Zbl

P. Bertail, S. Clémençon and J. Tressou, A storage model with random release rate for modeling exposure to food contaminants. Math. Biosci. Eng. 5 (2008) 35–60. | DOI | MR | Zbl

P. Bertail, S. Clémençon and J. Tressou, Statistical analysis of a dynamic model for dietary contaminant exposure. J. Biol. Dyn. 4 (2010) 212–234. | DOI | MR | Zbl

F. Bouguet, Quantitative speeds of convergence for exposure to food contaminants. ESAIM: PS 19 (2015) 482–501. | DOI | Numdam | MR | Zbl

A.W. Bowman, An alternative method of cross-validation for the smoothing of density estimates. Biometrika 71 (1984) 353–360. | DOI | MR

D. Chafaï, F. Malrieu and K. Paroux, On the long time behavior of the TCP window size process. Stoch. Process. Appl. 120 (2010) 1518–1534. | DOI | MR | Zbl

B. Cloez, Wasserstein decay of one dimensional jump-diffussions. Preprint , arXiv:1202.1259 (2012). | HAL

M.H.A. Davis, Markov models and optimization, Vol. 49 of Monographs on Statistics and Applied Probability. Chapman & Hall, London (1993). | MR | Zbl

M.H.A. Davis, Piecewise-deterministic Markov processes: a general class of nondiffusion stochastic models. J. Roy. Statist. Soc. Ser. B 46 (1984) 353–388. With discussion. | MR | Zbl

M. Doumic, M. Hoffmann, N. Krell and L. Robert, Statistical estimation of a growth-fragmentation model observed on a genealogical tree. Bernoulli 21 (2015) 1760–1799. | DOI | MR | Zbl

V. Dumas, F. Guillemin and Ph. Robert, A Markovian analysis of additive-increase multiplicative-decrease algorithms. Adv. Appl. Probab. 34 (2002) 85–111. | DOI | MR | Zbl

I. Grigorescu and M. Kang, Recurence and ergodicity for a continuous AIMD model. Preprint, available at http://www.math.miami.edu/˜igrigore/pp/b˙alpha˙0.pdf (2009).

F. Guillemin, P. Robert and B. Zwart, AIMD algorithms and exponential functionals. Ann. Appl. Probab. 14 (2004) 90–117. | DOI | MR | Zbl

M. Hairer, Martin and J.F. Mattingly, Yet another look at Harris’ ergodic theorem for Markov chains. Seminar on Stochastic Analysis, Random Fields and Applications VI. Progr. Probab. 63 (2011) 109–117. | MR | Zbl

P. Hall, J.S. Marron and B.U. Park, Smoothed cross-validation. Probab. Theory Related Fields 92 (1992) 1–20. | DOI | MR | Zbl

P. Laurençot and B. Perthame, Exponential decay for the growth-fragmentation/cell-division equation. Commun. Math. Sci. 7 (2009) 503–510. | DOI | MR | Zbl

M. Rudemo, Empirical choice of histograms and kernel density estimators. Scand. J. Statist. 9 (1982) 65–78. | MR | Zbl

Cité par Sources :