A fully data-driven method for estimating the shape of a point cloud
ESAIM: Probability and Statistics, Tome 20 (2016), pp. 332-348.

Given a random sample of points from some unknown distribution, we propose a new data-driven method for estimating its probability support S. Under the mild assumption that S is r-convex, the smallest r-convex set which contains the sample points is the natural estimator. The main problem for using this estimator in practice is that r is an unknown geometric characteristic of the set S. A stochastic algorithm is proposed for selecting its optimal value from the data under the hypothesis that the sample is uniformly generated. The new data-driven reconstruction of S is able to achieve the same convergence rates as the convex hull for estimating convex sets, but under a much more flexible smoothness shape condition.

Reçu le :
Accepté le :
DOI : 10.1051/ps/2016015
Classification : 62G05, 62G20
Mots-clés : Support estimation, r-convexity, uniformity, maximal spacing
Rodríguez-Casal, A. 1 ; Saavedra-Nieves, P. 1

1 Department of Statistics and Operations Research, University of Santiago de Compostela, Spain.
@article{PS_2016__20__332_0,
     author = {Rodr{\'\i}guez-Casal, A. and Saavedra-Nieves, P.},
     title = {A fully data-driven method for estimating the shape of a point cloud},
     journal = {ESAIM: Probability and Statistics},
     pages = {332--348},
     publisher = {EDP-Sciences},
     volume = {20},
     year = {2016},
     doi = {10.1051/ps/2016015},
     zbl = {1357.62228},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/ps/2016015/}
}
TY  - JOUR
AU  - Rodríguez-Casal, A.
AU  - Saavedra-Nieves, P.
TI  - A fully data-driven method for estimating the shape of a point cloud
JO  - ESAIM: Probability and Statistics
PY  - 2016
SP  - 332
EP  - 348
VL  - 20
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/ps/2016015/
DO  - 10.1051/ps/2016015
LA  - en
ID  - PS_2016__20__332_0
ER  - 
%0 Journal Article
%A Rodríguez-Casal, A.
%A Saavedra-Nieves, P.
%T A fully data-driven method for estimating the shape of a point cloud
%J ESAIM: Probability and Statistics
%D 2016
%P 332-348
%V 20
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/ps/2016015/
%R 10.1051/ps/2016015
%G en
%F PS_2016__20__332_0
Rodríguez-Casal, A.; Saavedra-Nieves, P. A fully data-driven method for estimating the shape of a point cloud. ESAIM: Probability and Statistics, Tome 20 (2016), pp. 332-348. doi : 10.1051/ps/2016015. http://archive.numdam.org/articles/10.1051/ps/2016015/

C. Aaron, A. Cholaquidis and R. Fraiman, On the maximal multivariate spacing extension and convexity tests. Preprint (2014). | arXiv

E. Arias-Castro and A. Rodríguez-Casal, On estimating the perimeter using the alpha-shape. Preprint (2015). | arXiv

A. Baíllo and A. Cuevas, On the estimation of a star-shaped set. Adv. Appl. Probab. 33 (2001) 717–726. | DOI | Zbl

A. Baíllo and A. Cuevas, Parametric versus nonparametric tolerance regions in detection problems. Comput. Stat. 21 (2006) 527–536. | DOI | Zbl

A. Baíllo, A. Cuevas and A. Justel, Set estimation and nonparametric detection. Can. J. Stat. 28 (2000) 765–782. | DOI | Zbl

J.R. Berrendero, A. Cuevas and B. Pateiro-López, A multivariate uniformity test for the case of unknown support. Stat. Comput. 22 (2012) 259–271. | DOI | Zbl

J. Chevalier, Estimation du support et du contour du support d’une loi de probabilité. Ann. Inst. Henri Poincaré, Probab. Stat. 12 (1976) 339–364. | Numdam | Zbl

A. Cholaquidis, A. Cuevas and R. Fraiman, On Poincaré cone property. Ann. Stat. 42 (2014) 255–284. | DOI | Zbl

A. Cuevas, On pattern analysis in the non-convex case. Kybernetes 19 (1990) 26–33. | DOI

A. Cuevas, R. Fraiman and B. Pateiro-López, On statistical properties of sets fulfilling rolling-type conditions. Adv. Appl. Probab. 44 (2012) 311–329. | DOI | Zbl

A. Cuevas and A. Rodríguez-Casal, On boundary estimation. Adv. Appl. Probab. 36 (2004) 340–354. | DOI | Zbl

L. Devroye and G.L. Wise, Detection of abnormal behavior via nonparametric estimation of the support. SIAM J. Appl. Math. 38 (1980) 480–488. | DOI | Zbl

L. Dümbgen and G. Walther, Rates of convergence for random approximations of convex sets. Adv. Appl. Probab. 28 (1996) 384–393. | DOI | Zbl

H. Edelsbrunner, Alpha shapes – a survey. To apprear in Tessellations in the Sciences. Springer (2016).

C.R. Genovese, M. Perone-Pacifico, I. Verdinelli and L. Wasserman, The geometry of nonparametric filament estimation. J. Amer. Statist. Assoc. 107 (2012) 788–799. | DOI | Zbl

U. Grenander, Abstract Inference. Wiley, New York (1981). | Zbl

S. Janson, Maximal spacings in several dimensions. Ann. Probab. 15 (1987) 274–280. | DOI | Zbl

A.P. Korostelëv and A.B. Tsybakov, Minimax Theory of Image Reconstruction. Springer (1993). | Zbl

D.P. Mandal and C.A. Murthy, Selection of alpha for alpha-hull in R2. Pattern Recogn. 30 (1997) 1759–1767. | DOI | Zbl

B. Pateiro-López and A. Rodríguez-Casal, Generalizing the convex hull of a sample: the R package alphahull. J. Stat. Softw. 34 (2010) 1–28. | DOI

B. Pateiro-López and A. Rodríguez-Casal, Recovering the shape of a point cloud in the plane. TEST 22 (2013) 19–45. | DOI | Zbl

M. Reitzner, Random polytopes and the efron’stein jackknife inequality. Ann. Probab. 31 (2003) 2136–2166. | DOI | Zbl

B.D. Ripley and J.P. Rasson, Finding the edge of a poisson forest. J. Appl. Probab. 14 (1977) 483–491. | DOI | Zbl

A. Rodríguez-Casal, Set estimation under convexity type assumptions. Ann. Inst. Henri Poincaré, Probab. Stat. 43 (2007) 763–774. | DOI | Numdam | Zbl

R. Schneider, Random approximation of convex sets. J. Microsc. 151 (1988) 211–227. | DOI | Zbl

R. Schneider, Convex Bodies: the Brunn–Minkowski Theory. Cambridge University Press (1993). | Zbl

J. Serra, Image Analysis and Mathematical Morphology. Academic Press, London (1982). | Zbl

G. Walther, Granulometric smoothing. Ann. Stat. 25 (1997) 2273–2299. | DOI | Zbl

G. Walther, On a generalization of blaschke’s rolling theorem and the smoothing of surfaces. Math. Methods Appl. Sci. 22 (1999) 301–316. | DOI | Zbl

Cité par Sources :