As a starting point we prove a functional central limit theorem for estimators of the invariant measure of a geometrically ergodic Harris-recurrent Markov chain in a multi-scale space. This allows to construct confidence bands for the invariant density with optimal (up to undersmoothing)
Accepté le :
DOI : 10.1051/ps/2016017
Mots-clés : Adaptive confidence bands, diffusion, drift estimation, ergodic Markov chain, stationary density, Lepski’s method, functional central limit theorem
@article{PS_2016__20__432_0, author = {S\"ohl, Jakob and Trabs, Mathias}, title = {Adaptive confidence bands for {Markov} chains and diffusions: {Estimating} the invariant measure and the drift}, journal = {ESAIM: Probability and Statistics}, pages = {432--462}, publisher = {EDP-Sciences}, volume = {20}, year = {2016}, doi = {10.1051/ps/2016017}, zbl = {1357.62198}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/ps/2016017/} }
TY - JOUR AU - Söhl, Jakob AU - Trabs, Mathias TI - Adaptive confidence bands for Markov chains and diffusions: Estimating the invariant measure and the drift JO - ESAIM: Probability and Statistics PY - 2016 SP - 432 EP - 462 VL - 20 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/ps/2016017/ DO - 10.1051/ps/2016017 LA - en ID - PS_2016__20__432_0 ER -
%0 Journal Article %A Söhl, Jakob %A Trabs, Mathias %T Adaptive confidence bands for Markov chains and diffusions: Estimating the invariant measure and the drift %J ESAIM: Probability and Statistics %D 2016 %P 432-462 %V 20 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/ps/2016017/ %R 10.1051/ps/2016017 %G en %F PS_2016__20__432_0
Söhl, Jakob; Trabs, Mathias. Adaptive confidence bands for Markov chains and diffusions: Estimating the invariant measure and the drift. ESAIM: Probability and Statistics, Tome 20 (2016), pp. 432-462. doi : 10.1051/ps/2016017. http://archive.numdam.org/articles/10.1051/ps/2016017/
Exponential concentration inequalities for additive functionals of Markov chains. ESAIM: PS 19 (2015) 440–481. | DOI | Numdam | Zbl
and ,Y. Aït-Sahalia, Econometrics of Diffusion Models. John Wiley & Sons, Ltd. (2010).
Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré. J. Funct. Anal. 254 (2008) 727–759. | DOI | Zbl
, and ,R.F. Bass, Diffusions and elliptic operators. Springer, New York (1998). | Zbl
Honest adaptive confidence bands and self-similar functions. Electron. J. Stat. 6 (2012) 1490–1516. | Zbl
,On smoothed probability density estimation for stationary processes. Stochastic Process. Appl. 21 (1986) 179–193. | DOI | Zbl
and ,Nonparametric Bernstein–von Mises theorems in Gaussian white noise. Ann. Statist. 41 (2013) 1999–2028. | DOI | Zbl
and ,On the Bernstein–von Mises phenomenon for nonparametric Bayes procedures. Ann. Statist. 42 (2014) 1941–1969. | DOI | Zbl
and ,Estimation of the asymptotic variance in the CLT for Markov chains. Stoch. Models 19 (2003) 449–465. | DOI | Zbl
and ,Limit theorems for functionals of ergodic Markov chains with general state space. Mem. Amer. Math. Soc. 139 (1999) 664. | Zbl
,Anti-concentration and honest, adaptive confidence bands. Ann. Statist. 42 (2014) 1787–1818. | DOI | Zbl
, and ,Spectral estimation for diffusions with random sampling times. Stochastic Process. Appl. 126 (2016) 2976–3008. | DOI | Zbl
and ,Penalized nonparametric mean square estimation of the coefficients of diffusion processes. Bernoulli 13 (2007) 514–543. | DOI | Zbl
, and ,Sharp adaptive estimation of the drift function for ergodic diffusions. Ann. Statist. 33 (2005) 2507–2528. | DOI | Zbl
,Geometric ergodicity for classes of homogeneous Markov chains. Stochastic Process. Appl. 124 (2014) 3362–3391. | DOI | Zbl
and ,Practical Markov chain Monte Carlo. Stat. Sci. 7 (1992) 473–483.
,I.I. Gihman and A.V. Skorohod, Stochastic differential equations. Springer, Heidelberg (1972). | Zbl
Confidence bands in density estimation. Ann. Statist. 38 (2010) 1122–1170. | DOI | Zbl
and ,E. Giné and R. Nickl, Mathematical foundations of infinite-dimensional statistical models. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press (2015).
Nonparametric estimation of scalar diffusions based on low frequency data. Ann. Statist. 32 (2004) 2223–2253. | DOI | Zbl
, and ,Nonparametric Bayesian drift estimation for multidimensional stochastic differential equations. Lith. Math. J. 54 (2014) 127–141. | DOI | Zbl
and ,Back to the future: generating moment implications for continuous-time Markov processes. Econometrica 63 (1995) 767–804. | DOI | Zbl
and ,Spectral methods for identifying scalar diffusions. J. Econom. 86 (1998) 1–32. | DOI | Zbl
, and ,W. Härdle, G. Kerkyacharian, D. Picard and A.Tsybakov, Wavelets, approximation, and statistical applications. Vol. 129 of Lecture Notes in Statistics. Springer-Verlag, New York (1998). | Zbl
Adaptive estimation in diffusion processes. Stochastic Process. Appl. 79 (1999) 135–163. | DOI | Zbl
,On adaptive inference and confidence bands. Ann. Statist. 39 (2011) 2383–2409. | DOI | Zbl
and ,Pseudo-maximum likelihood estimation in two classes of semiparametric diffusion models. J. Econom. 156 (2010) 239–259. | DOI | Zbl
,Y.A. Kutoyants, Statistical inference for ergodic diffusion processes. Springer Series in Statistics. Springer-Verlag London, Ltd., London (2004). | Zbl
Nonparametric estimation of the stationary density and the transition density of a Markov chain. Stochastic Process. Appl. 118 (2008) 232–260. | DOI | Zbl
,M. Ledoux, The concentration of measure phenomenon. Vol. 89 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (2001). | Zbl
Penalized nonparametric drift estimation for a continuously observed one-dimensional diffusion process. ESAIM: PS 15 (2011) 197–216. | DOI | Zbl
, and ,On nonparametric confidence intervals. Ann. Statist. 25 (1997) 2547–2554. | Zbl
,Goodness-of-fit test for ergodic diffusions by discrete-time observations: an innovation martingale approach. J. Nonparametr. Stat. 23 (2011) 237–254. | DOI | Zbl
, and ,S.P. Meyn and R.L. Tweedie, Markov chains and stochastic stability. Cambridge University Press, Cambridge (2009). | Zbl
Goodness of fit test for ergodic diffusions by tick time sample scheme. Stat. Inference Stoch. Process. 13 (2010) 81–95. | DOI | Zbl
and ,R. Nickl and J. Söhl, Nonparametric Bayesian posterior contraction rates for discretely observed scalar diffusions. To appear in Ann. Statist. (2016).
Convergence control methods for Markov chain Monte Carlo algorithms. Statistical Science 10 (1995) 231–253. | DOI | Zbl
,M. Rosenblatt, Density estimates and Markov sequences. In Nonparametric Techniques in Statistical Inference (Proc. Sympos., Indiana Univ., Bloomington, Ind., 1969). Cambridge Univ. Press, London (1970) 199–213.
Nonparametric estimation in Markov processes. Ann. Inst. Statist. Math. 21 (1969) 73–87. | DOI | Zbl
,Nonparametric estimation of the derivatives of the stationary density for stationary processes. ESAIM: PS 17 (2013) 33–69. | DOI | Numdam | Zbl
,Adaptive drift estimation for nonparametric diffusion model. Ann. Statist. 28 (2000) 815–836. | DOI | Zbl
,Frequentist coverage of adaptive nonparametric Bayesian credible sets (with discussion). Ann. Statist. 43 (2015) 1391–1428. | Zbl
, and ,H. Triebel, Theory of function spaces. Vol. 78 of Monographs in Mathematics. Birkhäuser Verlag, Basel (1983). | Zbl
Consistent nonparametric Bayesian inference for discretely observed scalar diffusions. Bernoulli 19 (2013) 44–63. | DOI | Zbl
and ,Donsker theorems for diffusions: necessary and sufficient conditions. Ann. Probab. 33 (2005) 1422–1451. | DOI | Zbl
and ,A. W. van der Vaart, Asymptotic statistics. Vol. 3 of Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge (1998). | Zbl
Nonparametric density and regression estimation for Markov sequences without mixing assumptions. J. Multivariate Anal. 30 (1989) 124–136. | DOI | Zbl
,Cité par Sources :