We study a class of logarithmic Sobolev inequalities with a general form of the energy functional. The class generalizes various examples of modified logarithmic Sobolev inequalities considered previously in the literature. Refining a method of Aida and Stroock for the classical logarithmic Sobolev inequality, we prove that if a measure on
Accepté le :
DOI : 10.1051/ps/2016030
Mots-clés : Concentration of measure, modified logarithmic Sobolev inequalities
@article{PS_2017__21__467_0, author = {Adamczak, Rados{\l}aw and Bednorz, Witold and Wolff, Pawe{\l}}, title = {Moment estimates implied by modified {log-Sobolev} inequalities}, journal = {ESAIM: Probability and Statistics}, pages = {467--494}, publisher = {EDP-Sciences}, volume = {21}, year = {2017}, doi = {10.1051/ps/2016030}, mrnumber = {3743923}, zbl = {1393.60024}, language = {en}, url = {https://www.numdam.org/articles/10.1051/ps/2016030/} }
TY - JOUR AU - Adamczak, Radosław AU - Bednorz, Witold AU - Wolff, Paweł TI - Moment estimates implied by modified log-Sobolev inequalities JO - ESAIM: Probability and Statistics PY - 2017 SP - 467 EP - 494 VL - 21 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/ps/2016030/ DO - 10.1051/ps/2016030 LA - en ID - PS_2017__21__467_0 ER -
%0 Journal Article %A Adamczak, Radosław %A Bednorz, Witold %A Wolff, Paweł %T Moment estimates implied by modified log-Sobolev inequalities %J ESAIM: Probability and Statistics %D 2017 %P 467-494 %V 21 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/ps/2016030/ %R 10.1051/ps/2016030 %G en %F PS_2017__21__467_0
Adamczak, Radosław; Bednorz, Witold; Wolff, Paweł. Moment estimates implied by modified log-Sobolev inequalities. ESAIM: Probability and Statistics, Tome 21 (2017), pp. 467-494. doi : 10.1051/ps/2016030. https://www.numdam.org/articles/10.1051/ps/2016030/
Logarithmic Sobolev inequalities and concentration of measure for convex functions and polynomial chaoses. Bull. Pol. Acad. Sci. Math. 53 (2005) 221–238. | DOI | MR | Zbl
,Tail and moment estimates for chaoses generated by symmetric random variables with logarithmically concave tails. Ann. Inst. Henri Poincaré Probab. Stat. 48 (2012) 1103–1136. | DOI | Numdam | MR | Zbl
and ,Concentration inequalities for non-Lipschitz functions with bounded derivatives of higher order. Probab. Theory Related Fields 162 (2015) 531–586. | DOI | MR | Zbl
and ,Moment estimates derived from Poincaré and logarithmic Sobolev inequalities. Math. Res. Lett. 1 (1994) 75–86. | DOI | MR | Zbl
and ,C. Ané, S. Blachère, D. Chafaï, P. Fougères, I. Gentil, F. Malrieu, C. Roberto and G. Scheffer, Sur les inégalités de Sobolev logarithmiques. Vol. 10 of Panoramas et Synthèses [Panoramas and Syntheses]. Société Mathématique de France, Paris (2000). | MR | Zbl
On decoupling, series expansions and tail behavior of chaos processes. J. Theor. Probab. 6 (1993) 101–122. | DOI | MR | Zbl
and ,D. Bakry, I. Gentil and M. Ledoux, Analysis and geometry of Markov diffusion operators. Springer, Cham (2014). | MR | Zbl
Mass transport and variants of the logarithmic Sobolev inequality. J. Geom. Anal. 18 (2008) 921–979. | DOI | MR | Zbl
and ,
Modified logarithmic Sobolev inequalities on
A generalized Poincaré inequality for Gaussian measures. Proc. Amer. Math. Soc. 105 (1989) 397–400. | MR | Zbl
,Extremal properties of half-spaces for log-concave distributions. Ann. Probab. 24 (1996) 35–48. | DOI | MR | Zbl
,Second order concentration on the sphere. Commun. Contemp. Math. 19 (2017) 1650058. | DOI | MR | Zbl
, and ,Poincaré’s inequalities and Talagrand’s concentration phenomenon for the exponential distribution. Probab. Theory Related Fields 107 (1997) 383–400. | DOI | MR | Zbl
and ,Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal. 163 (1999) 1–28. | DOI | MR | Zbl
and ,From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities. Geom. Funct. Anal. 10 (2000) 1028–1052. | DOI | MR | Zbl
and ,Entropy bounds and isoperimetry. Mem. Amer. Math. Soc. 176 (2005) (829) . | MR | Zbl
and ,C. Borell, On the Taylor series of a Wiener polynomial. Seminar Notes on multiple stochastic integration, polynomial chaos and their integration. Case Western Reserve Univ., Cleveland (1984).
Partially alternate derivation of a result of Nelson. J. Math. Phys. 10 (1969) 5052. | DOI | Zbl
,From the Prékopa-Leindler inequality to modified logarithmic Sobolev inequality. Ann. Fac. Sci. Toulouse Math. 17 (2008) 291–308. | DOI | Numdam | MR | Zbl
,Modified logarithmic Sobolev inequalities and transportation inequalities. Probab. Theory Related Fields 133 (2005) 409–436. | DOI | MR | Zbl
, and ,Modified logarithmic Sobolev inequalities in null curvature. Rev. Mat. Iberoam. 23 (2007) 235–258. | DOI | MR | Zbl
, and ,Tail and moment estimates for sums of independent random variables with logarithmically concave tails. Studia Math. 114 (1995) 303–309. | DOI | MR | Zbl
and ,Poincaré inequalities and dimension free concentration of measure. Ann. Inst. Henri Poincaré Probab. Stat. 46 (2010) 708–739. | DOI | Numdam | MR | Zbl
,Logarithmic Sobolev inequalities. Amer. J. Math. 97 (1975) 1061–1083. | DOI | MR | Zbl
,A bound on tail probabilities for quadratic forms in independent random variables. Ann. Math. Statist. 42 (1971) 1079–1083. | DOI | MR | Zbl
and ,Tail and moment estimates for sums of independent random vectors with logarithmically concave tails. Studia Math. 118 (1996) 301–304. | DOI | MR | Zbl
,Tail and moment estimates for some types of chaos. Studia Math. 135 (1999) 39–53. | DOI | MR | Zbl
,Estimates of moments and tails of Gaussian chaoses. Ann. Probab. 34 (2006) 2315–2331. | DOI | MR | Zbl
,R. Latała and K. Oleszkiewicz, Between Sobolev and Poincaré. In Geometric aspects of functional analysis. Vol. 1745 of Lect. Notes Math. Springer, Berlin (2000) 147–168 | MR | Zbl
M. Ledoux, The concentration of measure phenomenon. Vol. 89 of Mathematical Surveys and Monographs. Amer. Math. Society, Providence, RI (2001). | MR | Zbl
R. Łochowski, Moment and tail estimates for multidimensional chaoses generated by symmetric random variables with logarithmically concave tails. In Approximation and probability. Vol. 72 of Banach Center Publ. Polish Acad. Sci., Warsaw (2006) 161–176. | MR | Zbl
On the role of convexity in isoperimetry, spectral gap and concentration. Invent. Math. 177 (2009) 1–43. | DOI | MR | Zbl
,G. Pisier, Probabilistic methods in the geometry of Banach spaces. In Probability and analysis (Varenna, 1985). Vol. 1206 of Lect. Notes Math. Springer, Berlin (1986) 167–241. | MR | Zbl
Analytic inequalities, isoperimetric inequalities and logarithmic Sobolev inequalities. J. Funct. Anal. 64 (1985) 296–313. | DOI | MR | Zbl
,
Logarithmic Sobolev inequalities and the growth of
Modified logarithmic Sobolev inequalities and transportation cost inequalities in
Some inequalities satisfied by the quantities of information of Fisher and Shannon. Inform. Control 2 (1959) 101–112. | DOI | MR | Zbl
,M. Talagrand, A new isoperimetric inequality and the concentration of measure phenomenon. In Geometric aspects of functional analysis (1989–90). Vol. 1469 of Lect. Notes Math. Springer, Berlin (1991) 94–124. | MR | Zbl
The supremum of some canonical processes. Amer. J. Math. 116 (1994) 283–325. | DOI | MR | Zbl
,- Functional Estimation in Log-Concave Location Families, High Dimensional Probability IX, Volume 80 (2023), p. 393 | DOI:10.1007/978-3-031-26979-0_15
- Modified log-Sobolev inequalities, Beckner inequalities and moment estimates, Journal of Functional Analysis, Volume 282 (2022) no. 7, p. 109349 | DOI:10.1016/j.jfa.2021.109349
- Concentration Inequalities on the Multislice and for Sampling Without Replacement, Journal of Theoretical Probability, Volume 35 (2022) no. 4, p. 2712 | DOI:10.1007/s10959-021-01139-9
- Modified log-Sobolev inequalities and two-level concentration, Latin American Journal of Probability and Mathematical Statistics, Volume 18 (2021) no. 1, p. 855 | DOI:10.30757/alea.v18-31
- On the convex Poincaré inequality and weak transportation inequalities, Bernoulli, Volume 25 (2019) no. 1 | DOI:10.3150/17-bej989
- A note on concentration for polynomials in the Ising model, Electronic Journal of Probability, Volume 24 (2019) no. none | DOI:10.1214/19-ejp280
- Higher Order Concentration in Presence of Poincaré-Type Inequalities, High Dimensional Probability VIII, Volume 74 (2019), p. 55 | DOI:10.1007/978-3-030-26391-1_6
Cité par 7 documents. Sources : Crossref